Successful CRISPR Gene Editing in Non-Human Primates

By Carlos Villatoro

Imagine a world where maladies such as cystic fibrosis, Huntington’s Disease, or sickle cell anemia no longer exist. While the U.S. is far from achieving this lofty goal, it recently came a step closer at the California National Primate Research Center (CNPRC), where scientists have efficiently used CRISPR/Cas9 technology to modify the genes of rhesus macaque embryos.

The research, recently published in the latest edition of Human Molecular Genetics, paves the way for future studies where the possibility of birthing gene-edited monkeys that can serve as models for new therapies is greatly increased.

Clues to Life on Mars in a Polluted California Mine

By Becky Oskin

To find evidence of life on Mars, scientists from UC Davis and the U.S. Geological Survey are chasing clues in Mars-like environments on Earth.

Pollution at the disused Iron Mountain mine near Redding, Calif. turns the soil red and makes the environment Mars-like. Amy Williams, Towson University

The environment at the Iron Mountain mine near Redding, Calif. is similar to Mars. Amy Williams, Towson University

The researchers hope to find rock patterns and textures that are uniquely linked to microscopic life such as bacteria and algae. “It’s challenging to prove that a mineral was made by a living organism,” said lead study author Amy Williams, an assistant professor at Towson University in Towson, Maryland. Williams led the research as a graduate student at UC Davis. Finding similar textures in Mars rocks could bolster confidence that microscopic shapes in Red Planet rocks were formed by living creatures.

Plant Genes May Lack Off Switch, But Have Volume Control

By Jenna Gallegos

Scientists at the University of California, Davis have discovered that DNA sequences thought to be essential for gene activity can be expendable. Sequences once called junk sometimes call the shots instead.

Jenna Gallegos with an Arabidopsis plant. Arabidopsis thaliana or "thale cress" is a popular plant for laboratory studies.

Jenna Gallegos with an Arabidopsis thaliana plant. Sometimes called “thale cress,” Arabidopsis is a popular plant for laboratory studies.

Professor Alan Rose has been working for over two decades to unravel a mechanism called “intron-mediated enhancement.” I’m a graduate student in Rose’s lab, and we made an exceptional discovery in an unexceptional plant called Arabidopsis thaliana, or thale cress.

Gene Salad: Lettuce Genome Assembly Published

Represents Most Successful Group of Flowering Plants 

By Pat Bailey

Today (April 12), UC Davis researchers announced in Nature Communications that they have unlocked a treasure-trove of genetic information about lettuce and related plants, releasing the first comprehensive genome assembly for lettuce and the huge Compositae plant family.

Lettuce flower

Lettuce belongs to a large Compositae family of plants. A lettuce flower shows the similarity to plants such as ragweed and sunflowers. (Gregory Urquiaga)

Garden lettuce, or Lactuca sativa, is the plant species that includes a salad bar’s worth of lettuce types, ranging from iceberg to romaine. With an annual on-farm value of more than $2.4 billion, it is the most valuable fresh vegetable and one of the 10 most valuable crops, overall, in the United States.

Soil Microbes to Help African Farmers Fight Striga

Sorghum is the fifth most important cereal in the world. In sub-Saharan Africa, many farmers rely on this grain for food and feed. But Striga, a parasitic weed, can have a devastating impact on crop yield. With a grant of $8 million from the Bill & Melinda Gates Foundation, an international team including UC Davis researchers will now explore the potential of soil microbes to offer crop protection. The Netherlands Institute of Ecology (NIOO-KNAW) is coordinating the five-year project.

Striga on sorghum field

A sorghum field infested with Striga (purple flowers). The parasitic plant destroys up to half of Africa’s sorghum crop. (Taye Tessema, Ethiopian Institute of Agricultural Research)

Five Things You Probably Didn’t Know About the Soil Microbiome

By Lisa Howard

Soil Actually Has a Microbiome

Gut bacteria have been getting a lot of attention lately (yogurt, anyone?) but it turns out the soil in your own back yard is teeming with microbial life. According to Kate Scow, a professor of soil science and microbial ecology at UC Davis, a quarter teaspoon of soil can easily contain a billion bacterial cells. And she estimates there can be 10,000 to 50,000 different taxa of microbes in a single teaspoon. Soil is one of the most complex and diverse ecosystems on the planet, and it is one that is essential for human life through all the functions it provides: the breakdown of organic materials, food production, water purification, greenhouse gas reduction, and pollution cleanup, just to name a few.

Engineering Alums’ Startup To Make Transgenics Easier

By Holly Ober

Two UC Davis graduates have started a company incubated in the TEAM manufacturing facility at the UC Davis Department of Biomedical Engineering.

Arshia Firouzi and Gurkern Sufi met in 2011 as Freshmen living in Tercero Dormitories at UC Davis and quickly became friends. Arshia majored in Electrical Engineering and Gurkern in Biotechnology, and they worked with the mentorship of Professor Marc Facciotti to explore their shared interest in the intersection of electronics and biology. In 2015 they won a VentureWell grant for a research project, which they pursued in TEAM’s Molecular Prototyping and Bioinnovation Laboratory. By the end of their project, they had come up with an idea that grew into a company that could usher in a new era for laboratories all over the world.

New Steps in the Meiosis Chromosome Dance

Where would we be without meiosis and recombination? For a start, none of us sexually reproducing organisms would be here, because that’s how sperm and eggs are made. And when meiosis doesn’t work properly, it can lead to infertility, miscarriage, birth defects and developmental disorders.

Neil Hunter’s laboratory at the UC Davis College of Biological Sciences is teasing out the complex details of how meiosis works. In a new paper published online Jan. 6 in the journal Science, Hunter’s group describes new key players in meiosis, proteins called SUMO and ubiquitin and molecular machines called proteasomes. Ubiquitin is already well-known as a small protein that “tags” other proteins to be destroyed by proteasomes (wood chippers for proteins). SUMO is a close relative of ubiquitin.

Atom-by-Atom Growth Chart For Shells Helps Decode Past Climate

By Becky Oskin

For the first time scientists can see how the shells of tiny marine organisms grow atom-by-atom, a new study reports. The advance provides new insights into the mechanisms of biomineralization and will improve our understanding of environmental change in Earth’s past.

Foraminifera

Foraminifera are marine plankton with complex shells. The shells of dead forams in ocean sediments form a record of climate hundreds of millions of years into the past.

Latest Caterpillar Poll: Woolly Bears Are Undecided

With the third and final debate over, those voters who haven’t yet made up their minds will be focusing on their choice for President. But what do the woolly bear caterpillars of Bodega Bay have to say about the election?

Caterpillar

Woolly bear caterpillars are having a hard time picking the outcome of the 2016 Presidential election. (Eric Lo Presti/UC Davis)

The caterpillars shot to fame a few months ago when UC Davis graduate student Eric Lo Presti pointed out in a blog post that cycles in the caterpillar population tracked with the fortunes of political parties in presidential election years. Going back as far as 1984, Democrats won the White House in years when the caterpillars were abundant in March, and Republicans when the caterpillars were less prolific.