Protein Synthesis Machinery from Bacterial Consortia in One Shot

By Holly Ober

A new technique developed at UC Davis may have broken the barrier to rapid assembly of pure protein synthesis machinery outside of living cells.

Colored bacteria

E. coli bacteria tagged with different colors produced different mixtures of proteins. Together, the bacterial consortium makes all the proteins needed for mRNA translation/protein synthesis (Fernando Villarreal, UC Davis)

In order to reconstitute cellular reactions outside of biological systems, scientists need to produce the proteins involved. Rapid yet high purity reconstitution of the cellular reactions is critical for the high-throughput study of cellular pathways and cell-free diagnostic tests for various diseases. Reconstituting cellular reactions outside cells, however, requires the separate expression and purification of each protein required to execute the reactions. This process is expensive and time consuming, making the production of more than several proteins at once extremely challenging.

UC Davis Genome Researchers Facilitating NIH Data Commons Pilot

Researchers at the UC Davis School of Veterinary Medicine and Genome Center are taking part in an ambitious NIH initiative to make it easier for scientists to share research data and scientific tools online.

C. Titus Brown is associate professor in the UC Davis School of Veterinary Medicine and Genome Center.

“Harvesting the wealth of information in biomedical data will advance our understanding of human health and disease,” said NIH Director Francis S. Collins in a news release. “However, poor data accessibility is a major barrier to translating data into understanding. The NIH Data Commons Pilot Phase is an important effort to remove that barrier.”

See-through Zebrafish May Hold Clues to Ovarian Cancer

by Greg Watry

For thousands of years, animals have helped humans advance biomedical research. Early Greeks, such as Aristotle and Galen, studied animals to gain insights into anatomy, physiology and pathology. Today, model organisms, like mice, help researchers understand human diseases, opening the door to potential defenses and new therapies.

Postdoc Dena Leerberg, and Bruce Draper, associate professor of molecular and cellular biology in the UC Davis College of Biological Sciences, study reproductive development in zebrafish. David Slipher/UC Davis

Genome Project Aims to Restore Health of Redwood and Giant Sequoia Forests

By Ann Filmer

Some trees are better at surviving drought, fire, pests, and diseases than others. By identifying the genes responsible for these adaptations, scientists can compile a scalable database that will aid resource managers as they plan long-term conservation strategies, particularly as the climate changes.

UC Davis, Johns Hopkins University and Save the Redwoods League are working together to protect this iconic tree.

Professor David Neale, UC Davis Department of Plant Sciences, showed in preliminary research that it is feasible to sequence the redwood, which has a genome 10 times larger than ours. Redwoods are “hexaploid” with  six copies of each chromosome compared to humans’ two copies.

Live Fast Die Young: Updating Signal Detection Theory

Signal Detection Theory is a popular and well-established idea that has influenced behavioral science for around 50 years. Essentially, the theory holds that in a predator-prey relationship, prey animals will show more wariness and be more prone to flee as predators become more common. Danger signals are ambiguous, so in what appears to be a threatening situation, animals are better off running than hanging around to see if a predator really does strike.

Now Pete Trimmer, a postdoctoral research at UC Davis, has taken a fresh look at signal detection theory and come up with what at first look like counterintuitive results. In many cases, he says, animals should actually become less cautious as the risk of predation rises.

Crowdsourced Game Aims to Find Solutions to Aflatoxin

Mars, Inc., UC Davis and partners have launched a crowdsourcing initiative to solve the problem of aflatoxin contamination of crops. A series of aflatoxin puzzles will go online on Foldit, a platform that allows gamers to explore how amino acids are folded together to create proteins. The puzzles provide gamers with a starting enzyme that has the potential to degrade aflatoxin. Gamers from around the world then battle it out to redesign and improve the enzyme so that it can neutralize aflatoxin. Successful candidates from the computer game will be tested in the laboratory of Justin Siegel, assistant professor of chemistry, biochemistry and molecular medicine at UC Davis.

Hear This: Knockout Mice Show Genes Linked to Deafness

Fifty-two newly discovered genes that are critical for hearing have been found by testing gene-modified ‘knockout’ mice. The newly identifed genes will provide insights into the causes of hearing loss in humans. The study published Oct. 12 in Nature Communications was carried out by the International Mouse Phenotyping Consortium (IMPC), which includes the Mouse Biology Program at the University of California, Davis.

Prof. Kent Lloyd, director of the UC Davis Mouse Biology Program, in the lab. Gene-edited and “knockout” mice have become a vital tool in biomedical research. (Karin Higgins/UC Davis photo)

Fabric from Fermented Tea in the Biomaker Lab

The Molecular Prototyping and BioInnovation Laboratory, or “Biomaker Lab” at UC Davis is a place where students can try out their ideas and develop their own projects in biotechnology. It reflects as “maker culture”  that is well-established in engineering, and growing in biological sciences.

“Kombucha couture” clothes made by artist Sacha Laurin (center) for Paris Fashion Week and National Geographic magazine. With Laurin are, from left, models Ghazal Gill, Grace Sanders and Ericah Howard, and reporter Bethany Crouch of CBS13 and Good Day Sacramento.

New Cardiac Catheter Combines Light and Ultrasound to Measure Plaques

By Holly Ober

To win the battle against heart disease, cardiologists need better ways to identify the composition of plaque most likely to rupture and cause a heart attack. Angiography allows them to examine blood vessels for constricted regions by injecting them with a contrast agent before X-raying them. But because plaque does not always result in constricted vessels, angiography can miss dangerous buildups of plaque. Intravascular ultrasound can penetrate the buildup to identify depth, but lacks the ability to identify some of the finer details about risk of plaque rupture.

From a Student Competition to a Potential Treatment for Celiac Disease

Synthetic DNA Approach is Key to Startup’s New Drug

By Lisa Howard

The way Justin Siegel describes it, ordering synthetic DNA is almost as easy as ordering a pair of shoes online.

“You just type it in — or if the protein has been sequenced at one point, we can copy and paste — order it, and it shows up five days later.”

UC Davis chemist Justin Siegel is a co-founder of PvP Biologics. The company is developing a new treatment for celiac disease, an autoimmune disorder triggered by ingesting gluten. (UC Davis/Karin Higgins)