Open Source Data Base of Non-Human Primate Brain Imaging

An international team, including researchers at the California National Primate Research Center at UC Davis,  has released the first open-source data sets of non-human primate brain imaging. Details of the PRIMatE Data Exchange (PRIME-DE) consortium are published today (Sept. 27) in the journal Neuron.

The project will greatly augment progress on in vivo brain imaging of non-human primates, said John Morrison, director of the CNPRC and Professor of Neurology at the UC Davis School of Medicine.

MRI images

PRIME-DE collects MRI images of brains of non-human primates. It will be a global resource for researchers. (PRIME-DE)

Karen Moxon: Decoding the Brain

Engineering professor in lab

Karen Moxon, professor of biomedical engineering, in her lab at UC Davis. Photo by Reeta Asmai/UC Davis.

By Aditi Risbud Bartl 

In the last decade, researchers in academia and the technology sector have been racing to unlock the potential of artificial intelligence. In parallel with federally-funded efforts from the National Institutes of Health and the National Science Foundation, heavy-hitters such as Microsoft, Facebook and Google are deeply invested in artificial intelligence.

As part of the BRAIN Initiative, many UC Davis investigators are studying the nervous system and developing new technologies to investigate brain function.

Markers of Cellular Aging Improve During Insight Meditation Retreat

By Anahita Hamidi

Telomeres are repetitive nucleotide sequences that act as protective “caps” at the end of DNA strands. As cells age, either as a function of time or as a result of stress and poor health, telomeres tend to shorten. As such, telomere length can be used as a crude biological marker of health and well-being.

Telomeres are caps at the end of a chromosome. They become shorter with aging. (Getty Images)

A recent study by researchers at the University of California Davis, Center for Mind and Brain, measured changes in telomere length, telomerase (the enzyme which replenishes telomeres), and telomere-regulating genes in a group of individuals who participated in a month-long Insight meditation retreat.

Study Challenges Evolution of How Humans Acquired Language

By Karen Nikos-Rose

A gene implicated in affecting speech and language, FOXP2, is held up as a “textbook” example of positive selection on a human-specific trait. But in a paper in the journal Cell on Aug. 2, researchers challenge this finding. Their analysis of genetic data from a diverse sample of modern people and Neanderthals saw no evidence for recent, human-specific selection of FOXP2 and revises the history of how we think humans acquired language.

Brain graphic

What makes us human? The FOXP2 gene has been associated with uniquely human language abilities. But a new study with a wider variety of people shows no evidence of selection for FOXP2 in modern humans. (Image by Brenna Henn, UC Davis)

Pay Attention: $2.7 Million Grant to Map Brain’s Attention Network

By Becky Oskin

From moment to moment, the brain processes millions of pieces of information. When people need to focus on a critical task, special circuits in the brain’s attention network kick in to filter the information firehose.

A new project with UC Davis neuroscientists and bioengineers from the University of Florida will explore the brain circuits that allow us to focus our attention.

Receptors Key to Strong Memories

When we create a memory, a pattern of connections forms between neurons in the brain. New work from UC Davis shows how these connections can be strengthened or weakened at a molecular level. The study is published Feb. 27 in the journal Cell Reports.

AMPA-type glutamate receptors are responsible for fast synaptic transmission in the brain. (Wikipedia image)

Neurons branch into many small fibers, called dendrites, that connect to other neurons across tiny gaps called synapses. Messages travel across synapses as chemical signals: A molecule, or neurotransmitter, is released on one side of the synapse and connects with a receptor on the other side, a bit like tossing a ball and a fielder catching it in a mitt.

Prozac Use in Children: Studying Side Effects of Fluoxetine in a Monkey Model

Fluoxetine (Prozac) is widely prescribed for depression, anxiety and other behavioral and psychiatric disorders and is approved for use in children. But little is known about the side effects of fluoxetine, part of a class of drugs called Selective Serotonin Reuptake Inhibitors (SSRIs) in pre-teen children.

Young monkeys

Rhesus macacque monkeys have a relatively long period of development before they reach sexual maturity. That makes them a useful model to study the possible side effects of Fluoxetine (Prozac) in children. (Photo by K. West, CNPRC)

Video: Why Study Bird Brains?

Why study the brains of birds? Do birds even have brains worth talking about? In fact, birds can show complex behavior and mental function. We can learn a lot from studying the neuroscience of birds — knowledge that we can relate to how human brains function in health and disease. In this video, Rebecca Calisi Rodriguez, assistant professor of neurobiology, physiology and behavior in the UC Davis College of Biological Sciences, introduces her own work on bird brains and talks to some prominent neuroscientists about their work.

More information

Rebecca Calisi’s lab website 

Podcast: Visual Attention and Meaning

In this episode of the Three Minute Egghead podcast, I talk to John Henderson of the UC Davis Center for Mind and Brain about a new paper from his lab that overturns current thinking about visual attention.

It’s usually thought that our eyes are drawn to objects that are salient or “stand out” from the background. But this “magpie theory” of attention is wrong, Henderson says. He and postdoc Taylor Hayes show instead that our eyes are drawn by parts of a scene that have “meaning.”

Listen here.

 

More information

Visual Attention Drawn to Meaning, not What Stands Out (news release)

Brain areas responsible for “learning by watching” identified

By Nicole Gelfand

Children imitate our every action- from their very first words to even the most miniscule of habits they acquire from their parents. Children are a firsthand example of how human learning often takes place by observing other individuals, a term referred to as observational learning.  From a young age human brains associate observed actions with the rewards and consequences that follow, to subsequently “learn by watching” and change behavior.