$5.66 Million CIRM Grant Strengthens Researchers’ Spina Bifida Work

By Brady Oppenheim

UC Davis researchers have received a $5.66 million grant from the California Institute for Regenerative Medicine (CIRM) supporting their research on stem-cell therapies for spina bifida.

Professor Aijun Wang of the UC Davis Departments of Biomedical Engineering and of Surgery and Professor Diana Farmer, chair of the UC Davis Department of Surgery, will use the CIRM funding to continue their decade-long research efforts exploring stem-cell therapies that show promise for both animals and humans with the congenital condition.

Biomedical engineer Aijun Wang is collaborating with UC Davis surgeon Diana Farmer on research to treat spina bifida with stem cells in both human and animal patients. (UC Davis Health)

Understanding the Immortal Hydra

by Greg Watry

Hydra under microscope

Hydra, which measure just millimeters in length, are studied by biologists for their regenerative capabilities and uncharacteristic longevity. Stefan Siebert/Juliano Lab

The hydra is a small freshwater invertebrate named after the fearsome monster of Greek mythology that grew two new heads for each one cut off. Now the real hydra’s ability to regrow pieces of itself is attracting growing interest from regenerative biologists as this tiny, jellyfish-like creature may hold within its genomic code the key to biological immortality.

NIH Funds Project to Model Atrial Fibrillation with Heart-on-a-Chip

By Holly Ober

Creating a model of atrial fibrillation with live human heart cells on a chip is the goal of a new $6 million, five-year grant to Professor Steven George at the UC Davis Department of Biomedical Engineering and colleagues at Washington University in St. Louis.

Steven George headshot

UC Davis biomedical engineer Steven George will grow heart cells on a chip to study atrial fibrillation.

Atrial fibrillation is an irregular heartbeat caused when the heart’s upper chambers beat chaotically and out of sync with the lower chambers, leading to a variety of health problems including stroke and death. Nearly one in ten people over the age of 65 suffer from atrial fibrillation at a cost of around $6 billion.

UC Davis Mouse Biology Program Developing “Green” Mouse House

By Dawn Rowe

The UC Davis Mouse Biology Program (MBP) has received an award of $414,000 from the National Institutes of Health to move towards sustainable, environment-friendly technology for its high-containment vivarium for mutant mice.  The grant will also improve animal health and welfare, ergonomics for vivarium staff, and operational efficiencies.

Prof. Kent Lloyd, director of the UC Davis Mouse Biology Program, in the lab. Gene-edited and “knockout” mice have become a vital tool in biomedical research. (Karin Higgins/UC Davis photo)

Going ‘green” is a multi-step process that will take place over the next 12 months, and led by Kristin Grimsrud, associate director of vivaria and veterinary care for the program.

Successful CRISPR Gene Editing in Non-Human Primates

By Carlos Villatoro

Imagine a world where maladies such as cystic fibrosis, Huntington’s Disease, or sickle cell anemia no longer exist. While the U.S. is far from achieving this lofty goal, it recently came a step closer at the California National Primate Research Center (CNPRC), where scientists have efficiently used CRISPR/Cas9 technology to modify the genes of rhesus macaque embryos.

The research, recently published in the latest edition of Human Molecular Genetics, paves the way for future studies where the possibility of birthing gene-edited monkeys that can serve as models for new therapies is greatly increased.

Experts In Human, Horse Stem Cells Join World Stem Cell Summit

Event Includes Horse Therapies For First Time

By Pat Bailey

Four UC Davis researchers with expertise in the application of stem cell science for therapies in human or veterinary medicine are slated to speak during the World Stem Cell Summit in Palm Beach, Florida, Dec. 6-9.

UC Davis researchers are exploring stem cell technology to treat both horses and humans. Photo by Karin Higgins/UC Davis.

UC Davis researchers are exploring stem cell technology to treat both horses and humans. Photo by Karin Higgins/UC Davis.

This will be the 12th consecutive year that the summit has brought together scientists, physicians and veterinarians, industry representatives and patient advocates from around the world to share medical breakthroughs in stem cell research, also known as regenerative medicine.

Printed spots for growing liver stem cells

[Contributed by Holly Ober, Biomedical Engineering]

Transplanted liver cells could repair livers damaged by toxins or infections. Stem cells hold tremendous promise for liver-related therapies because they can grow in a Petri dish to become any cell type, including liver cells. However, scientists have yet to identify the best reagents to add into the Petri dish to push stem cells to become liver cells. An expensive and time-consuming process of trial and error guides the discovery of reagents and signals for stem cell differentiation. Now, a team of biomedical engineers led by Prof. Alexander Revzin at UC Davis has found a way to grow liver cells from stem cells more cheaply and effectively than current methods.

Final mouse genome published

The most complete version to date of the mouse genome was published yesterday in the journal PLoS Biology. “Build 36,” from the C57 inbred strain of black mice, has 175,000 fewer gaps, 139 megabytes of new sequences and realigns genes that were incorrectly described in an earlier version of the mouse genome.

The new genome map predicts just over 20,000 protein-coding genes in the mouse. About 75 percent of these are 1:1 “orthologs” or counterparts of human genes. The authors note that about 5,000 of these genes can be studied in “knockout” mice.

Human stem cells form new blood vessels in mice

Therapy restores blood flow in mice, forms the basis for upcoming clinical trials in humans

(SACRAMENTO, Calif.) — Researchers have successfully induced the formation of new blood vessels in mice with reduced blood flow (ischemia) to their limbs using adult human stem cells. The breakthrough treatment resulted in fully functioning limbs that showed both increased blood flow to previously damaged areas and an increase in the number of blood vessels. The study, published in this week’s print edition of the journal Blood, paves the way for the stem cell-based treatment of peripheral arterial disease (PAD) in humans, a painful condition common in diabetic patients that can lead to amputation.

Public Forum on Stem Cell Treatments is May 12

Four UC Davis stem cell experts will give brief presentations on stem cell research followed by question-and-answer sessions during a community forum on Tuesday, May 12 from 5:30 to 7:30 p.m. at the UC Davis Cancer Center auditorium, 4501 X Street, in Sacramento.

The event, which is free and open to the public, is the first in a series of three discussions entitled “Stem Cell Dialogues,” which offer opportunities for the public to learn about the stem cell therapies UC Davis is developing to potentially treat and cure a wide array of disease and injury. With limited seating, those interested in attending this first session should reserve seats by contacting Michele Steiner at michele.steiner@ucdmc.ucdavis.edu or calling her at 916-734-9116.