Atom-by-Atom Growth Chart For Shells Helps Decode Past Climate

By Becky Oskin

For the first time scientists can see how the shells of tiny marine organisms grow atom-by-atom, a new study reports. The advance provides new insights into the mechanisms of biomineralization and will improve our understanding of environmental change in Earth’s past.

Foraminifera

Foraminifera are marine plankton with complex shells. The shells of dead forams in ocean sediments form a record of climate hundreds of millions of years into the past.

Led by researchers from the University of California, Davis and the University of Washington, with key support from the U.S. Department of Energy’s Pacific Northwest National Laboratory, the team examined an organic-mineral interface where the first calcium carbonate crystals start to appear in the shells of foraminifera, a type of plankton.

Latest Caterpillar Poll: Woolly Bears Are Undecided

With the third and final debate over, those voters who haven’t yet made up their minds will be focusing on their choice for President. But what do the woolly bear caterpillars of Bodega Bay have to say about the election?

Caterpillar

Woolly bear caterpillars are having a hard time picking the outcome of the 2016 Presidential election. (Eric Lo Presti/UC Davis)

The caterpillars shot to fame a few months ago when UC Davis graduate student Eric Lo Presti pointed out in a blog post that cycles in the caterpillar population tracked with the fortunes of political parties in presidential election years. Going back as far as 1984, Democrats won the White House in years when the caterpillars were abundant in March, and Republicans when the caterpillars were less prolific.

Nobel Medicine Prize for “self-eating”

“Gnothi seauton” or “Know thyself,” said the Ancient Greeks; but they might have also said, “eat yourself.” For biologists, autophagy or “self-eating” is the process that cells use to recycle material inside the cell. It breaks down defective proteins and molecules, disposes of invading viruses and bacteria, provides an energy source when food is lacking and generally keeps cells fit and healthy. Problems in autophagy are implicated in cancer, aging, infectious disease and degenerative disorders.

Yoshinori Ohsumi after hearing he had been awarded the 2016 Nobel Prize in Physiology or Medicine. Photo: Mari Honda

Yoshinori Ohsumi after hearing he had been awarded the 2016 Nobel Prize in Physiology or Medicine.
Photo: Mari Honda

How humans affect coral reef recovery from natural disasters

The world’s coral reefs are both stunningly beautiful and vital to ocean health, hosting a huge diversity of fish and marine life. And they are, as they always have been, under pressure from periodic natural disasters. However, a coral reef’s ability to recover from unavoidable and often unpredictable natural disasters, like hurricanes and tsunamis, may depend on human activities including fishing and pollution. UC Davis marine biologist Mike Gil is one of the scientists working to understand how reefs recover from natural disturbances in the presence of unnatural, man-made stressors.

Biological invasions threaten global economies and biodiversity

Developing nations particularly at risk

By Kat Kerlin

With the increasing pace of globalization comes the movement of invasive non-native species around the planet. Although often seen as a “first-world problem,” a new study shows these invasions threaten the economies and livelihoods of residents in some of the world’s poorest nations.

The harlequin ladybird was introduced to North America from Asia in 1916 to control aphids. It has spread to Europe and though beloved by many, is considered a pest in some regions. Credit: Wikimedia Commons

The harlequin ladybird was introduced to North America from Asia in 1916 to control aphids. It has spread to Europe and though beloved by many, is considered a pest in some regions. Credit: Wikimedia Commons

UC Davis Wildlife and Fish Ranked No. 1 in Nation

Department faculty recognized for top scholarly performance

By Kat Kerlin

Faculty in the UC Davis Department of Wildlife, Fish and Conservation Biology were recently ranked No. 1 in the nation for research productivity and impact.

Brian Todd of the UC Davis Department of Willdife, Fish and Conservation Biology found that turtles at Sequoia National Park still carry agricultural pesticides from past decades in their bodies. Credit: Brian Todd/UC Davis

Brian Todd of the UC Davis Department of Willdife, Fish and Conservation Biology found that turtles at Sequoia National Park still carry agricultural pesticides from past decades in their bodies. Credit: Brian Todd/UC Davis

The distinction came from an analysis of 33 research-extensive universities in the United States belonging to the National Association of University Fisheries and Wildlife Programs.

Do Zebra stripes confuse biting flies?

Audio: Listen to this story on our podcast, Three Minute Egghead. 

 

Zebra stripes have fascinated people for millennia, and there are a number of different theories to explain why these wild horses should be so brightly marked. A handful of laboratories around the world – including one lead by UC Davis wildlife biologist Tim Caro – have been putting these theories to the test. A new paper from Caro’s group, led by Ken Britten at the UC Davis Center for Neuroscience, puts a hole in one idea: that the stripes confuse biting flies by breaking up polarized light.

UC Davis scientists explore the microbiome

Today’s White House announcement of the National Microbiome Initiative will bring new funding and attention to better understand the billions of microbes that swarm around in and around us and probably play an important role in our health, food and environment. At UC Davis, many scientists are already exploring this hidden world. Here are a few of them.

Jonathan Eisen is one of the pioneers of studying microbe communities through genetic sequencing. His lab is involved in understanding the complete “Tree of Life,” and projects on microbial communities associated with buildings, as well as communities on different plants and animals, including people, dogs and cats. A prolific blogger, Eisen regularly calls out examples of excessive microbiome hype.

How antibiotics open door to “bad” gut bacteria: more oxygen

By Carole Gan

Antibiotics are essential for fighting bacterial infection, but they can also make the body more prone to infection and diarrhea. Exactly how do antibiotics foster growth of disease-causing microbes – and how can resident “good” microbes in the gut protect against pathogens, such as Salmonella?

Now research led by Andreas Bäumler, professor of medical immunology and microbiology at UC Davis Health System, has identified the chain of events that occur within the gut lumen of mice after antibiotic treatment that allow “bad” bugs to flourish.

Microbe studies zoom in on effects of HIV in the gut

By Pat Bailey

The curtain cloaking how AIDS and HIV (human immunodeficiency virus) impact the human digestive and immune systems has been drawn back a bit further, thanks to a team of researchers from UC Davis’ departments of Food Science and Technology and Medical Microbiology and Immunology.

The small intestine­ is extremely difficult to study because of its location in the body but plays a critical role in human health. Its inner lining offers both a portal for absorbing nutrients and a barrier against toxins or invasive microbes.