Soil Microbes to Help African Farmers Fight Striga

Sorghum is the fifth most important cereal in the world. In sub-Saharan Africa, many farmers rely on this grain for food and feed. But Striga, a parasitic weed, can have a devastating impact on crop yield. With a grant of $8 million from the Bill & Melinda Gates Foundation, an international team including UC Davis researchers will now explore the potential of soil microbes to offer crop protection. The Netherlands Institute of Ecology (NIOO-KNAW) is coordinating the five-year project.

Striga on sorghum field

A sorghum field infested with Striga (purple flowers). The parasitic plant destroys up to half of Africa’s sorghum crop. (Taye Tessema, Ethiopian Institute of Agricultural Research)

Five Things You Probably Didn’t Know About the Soil Microbiome

By Lisa Howard

Soil Actually Has a Microbiome

Gut bacteria have been getting a lot of attention lately (yogurt, anyone?) but it turns out the soil in your own back yard is teeming with microbial life. According to Kate Scow, a professor of soil science and microbial ecology at UC Davis, a quarter teaspoon of soil can easily contain a billion bacterial cells. And she estimates there can be 10,000 to 50,000 different taxa of microbes in a single teaspoon. Soil is one of the most complex and diverse ecosystems on the planet, and it is one that is essential for human life through all the functions it provides: the breakdown of organic materials, food production, water purification, greenhouse gas reduction, and pollution cleanup, just to name a few.

Engineering Alums’ Startup To Make Transgenics Easier

By Holly Ober

Two UC Davis graduates have started a company incubated in the TEAM manufacturing facility at the UC Davis Department of Biomedical Engineering.

Arshia Firouzi and Gurkern Sufi met in 2011 as Freshmen living in Tercero Dormitories at UC Davis and quickly became friends. Arshia majored in Electrical Engineering and Gurkern in Biotechnology, and they worked with the mentorship of Professor Marc Facciotti to explore their shared interest in the intersection of electronics and biology. In 2015 they won a VentureWell grant for a research project, which they pursued in TEAM’s Molecular Prototyping and Bioinnovation Laboratory. By the end of their project, they had come up with an idea that grew into a company that could usher in a new era for laboratories all over the world.

New Steps in the Meiosis Chromosome Dance

Where would we be without meiosis and recombination? For a start, none of us sexually reproducing organisms would be here, because that’s how sperm and eggs are made. And when meiosis doesn’t work properly, it can lead to infertility, miscarriage, birth defects and developmental disorders.

Neil Hunter’s laboratory at the UC Davis College of Biological Sciences is teasing out the complex details of how meiosis works. In a new paper published online Jan. 6 in the journal Science, Hunter’s group describes new key players in meiosis, proteins called SUMO and ubiquitin and molecular machines called proteasomes. Ubiquitin is already well-known as a small protein that “tags” other proteins to be destroyed by proteasomes (wood chippers for proteins). SUMO is a close relative of ubiquitin.

Atom-by-Atom Growth Chart For Shells Helps Decode Past Climate

By Becky Oskin

For the first time scientists can see how the shells of tiny marine organisms grow atom-by-atom, a new study reports. The advance provides new insights into the mechanisms of biomineralization and will improve our understanding of environmental change in Earth’s past.

Foraminifera

Foraminifera are marine plankton with complex shells. The shells of dead forams in ocean sediments form a record of climate hundreds of millions of years into the past.

Led by researchers from the University of California, Davis and the University of Washington, with key support from the U.S. Department of Energy’s Pacific Northwest National Laboratory, the team examined an organic-mineral interface where the first calcium carbonate crystals start to appear in the shells of foraminifera, a type of plankton.

Latest Caterpillar Poll: Woolly Bears Are Undecided

With the third and final debate over, those voters who haven’t yet made up their minds will be focusing on their choice for President. But what do the woolly bear caterpillars of Bodega Bay have to say about the election?

Caterpillar

Woolly bear caterpillars are having a hard time picking the outcome of the 2016 Presidential election. (Eric Lo Presti/UC Davis)

The caterpillars shot to fame a few months ago when UC Davis graduate student Eric Lo Presti pointed out in a blog post that cycles in the caterpillar population tracked with the fortunes of political parties in presidential election years. Going back as far as 1984, Democrats won the White House in years when the caterpillars were abundant in March, and Republicans when the caterpillars were less prolific.

Nobel Medicine Prize for “self-eating”

“Gnothi seauton” or “Know thyself,” said the Ancient Greeks; but they might have also said, “eat yourself.” For biologists, autophagy or “self-eating” is the process that cells use to recycle material inside the cell. It breaks down defective proteins and molecules, disposes of invading viruses and bacteria, provides an energy source when food is lacking and generally keeps cells fit and healthy. Problems in autophagy are implicated in cancer, aging, infectious disease and degenerative disorders.

Yoshinori Ohsumi after hearing he had been awarded the 2016 Nobel Prize in Physiology or Medicine. Photo: Mari Honda

Yoshinori Ohsumi after hearing he had been awarded the 2016 Nobel Prize in Physiology or Medicine.
Photo: Mari Honda

How humans affect coral reef recovery from natural disasters

The world’s coral reefs are both stunningly beautiful and vital to ocean health, hosting a huge diversity of fish and marine life. And they are, as they always have been, under pressure from periodic natural disasters. However, a coral reef’s ability to recover from unavoidable and often unpredictable natural disasters, like hurricanes and tsunamis, may depend on human activities including fishing and pollution. UC Davis marine biologist Mike Gil is one of the scientists working to understand how reefs recover from natural disturbances in the presence of unnatural, man-made stressors.

Biological invasions threaten global economies and biodiversity

Developing nations particularly at risk

By Kat Kerlin

With the increasing pace of globalization comes the movement of invasive non-native species around the planet. Although often seen as a “first-world problem,” a new study shows these invasions threaten the economies and livelihoods of residents in some of the world’s poorest nations.

The harlequin ladybird was introduced to North America from Asia in 1916 to control aphids. It has spread to Europe and though beloved by many, is considered a pest in some regions. Credit: Wikimedia Commons

The harlequin ladybird was introduced to North America from Asia in 1916 to control aphids. It has spread to Europe and though beloved by many, is considered a pest in some regions. Credit: Wikimedia Commons

UC Davis Wildlife and Fish Ranked No. 1 in Nation

Department faculty recognized for top scholarly performance

By Kat Kerlin

Faculty in the UC Davis Department of Wildlife, Fish and Conservation Biology were recently ranked No. 1 in the nation for research productivity and impact.

Brian Todd of the UC Davis Department of Willdife, Fish and Conservation Biology found that turtles at Sequoia National Park still carry agricultural pesticides from past decades in their bodies. Credit: Brian Todd/UC Davis

Brian Todd of the UC Davis Department of Willdife, Fish and Conservation Biology found that turtles at Sequoia National Park still carry agricultural pesticides from past decades in their bodies. Credit: Brian Todd/UC Davis

The distinction came from an analysis of 33 research-extensive universities in the United States belonging to the National Association of University Fisheries and Wildlife Programs.