Fabric from Fermented Tea in the Biomaker Lab

The Molecular Prototyping and BioInnovation Laboratory, or “Biomaker Lab” at UC Davis is a place where students can try out their ideas and develop their own projects in biotechnology. It reflects as “maker culture”  that is well-established in engineering, and growing in biological sciences.

“Kombucha couture” clothes made by artist Sacha Laurin (center) for Paris Fashion Week and National Geographic magazine. With Laurin are, from left, models Ghazal Gill, Grace Sanders and Ericah Howard, and reporter Bethany Crouch of CBS13 and Good Day Sacramento.

New Cardiac Catheter Combines Light and Ultrasound to Measure Plaques

By Holly Ober

To win the battle against heart disease, cardiologists need better ways to identify the composition of plaque most likely to rupture and cause a heart attack. Angiography allows them to examine blood vessels for constricted regions by injecting them with a contrast agent before X-raying them. But because plaque does not always result in constricted vessels, angiography can miss dangerous buildups of plaque. Intravascular ultrasound can penetrate the buildup to identify depth, but lacks the ability to identify some of the finer details about risk of plaque rupture.

From a Student Competition to a Potential Treatment for Celiac Disease

Synthetic DNA Approach is Key to Startup’s New Drug

By Lisa Howard

The way Justin Siegel describes it, ordering synthetic DNA is almost as easy as ordering a pair of shoes online.

“You just type it in — or if the protein has been sequenced at one point, we can copy and paste — order it, and it shows up five days later.”

UC Davis chemist Justin Siegel is a co-founder of PvP Biologics. The company is developing a new treatment for celiac disease, an autoimmune disorder triggered by ingesting gluten. (UC Davis/Karin Higgins)

“Insect Allies” Enlisted to Protect Maize Crops from Pests

Researchers at UC Davis, the Boyce Thompson Institute (BTI) at Cornell University, the University of Minnesota and Iowa State University have received a four-year, $10.3 million “Insect Allies” award from the Defense Advance Research Projects Agency (DARPA) to engineer viruses carried by insects  that can help in combatting disease, drought, and other yield-reducing stresses in maize.

Corn leaf aphids feeding on maize. The VIPER “Insect Allies” project funded by DARPA will study using viruses carried by such insects to make mature maize plants resistant to pests. Photo by Meena Haribal.

DNA Repair Gone Wrong Leads to Cascade of Chromosome Rearrangements

Homologous Recombination Can Cause More Breaks As It Fixes Them

The traditional view of cancer is that a cell has to sustain a series of hits to its DNA before its defenses break down enough for it to turn cancerous. But cancer researchers have also found that cells can experience very rapid and widespread DNA damage that could quickly lead to cancer or developmental defects.

Now researchers at the University of California, Davis, have found that these complex chromosomal rearrangements can be triggered in a single event when a process used to repair DNA breaks, homologous recombination, goes wrong. The work is published Aug. 10 in the journal Cell.

UC Davis Joins DARPA-funded “Safe Genes” Program

Initiative Aims to Support Responsible CRISPR Gene Editing

By Trina Wood

The federal Defense Advanced Research Projects Agency (DARPA) last week announced the Safe Genes program to explore innovative genetic techniques to support bio-innovation and combat biological threats. The effort, supported by a $65 million grant from DARPA over four years, aims to harness gene editing tools in a safe, responsible manner to maximize the benefits of these technologies while minimizing their inherent risks.

Aedes aegypti carries yellow fever, Zika and other viruses. (CDC photo)

UC Davis Launches Cross-Campus Microbiome Initiative

By Ana Lucia Cordova-Kreylos

The UC Davis Office of Research this week (July 10) announced the launch of the Microbiome Special Research Program (SRP), designed to leverage and build upon the broad and deep expertise in microbiome science across the university.

“UC Davis has incredible breadth and depth in microbiome research with over 100 laboratories actively pursuing projects with links to agriculture, environment, energy and human and animal health,” said Cameron Carter, interim vice chancellor for research at UC Davis. “The decision to invest in a platform to empower these teams was obvious given our strength in these areas and our potential to charter new frontiers that address some of our world’s most pressing issues.”

Surprise Result: Increasing Dispersal Increases Ecological Diversity

By Kathy Keatley Garvey

A study of microbes that live in the nectar of flowers has turned up an unexpected result that challenges a common assumption in ecology.

It’s been widely assumed that the more easily organisms can disperse between habitats, the more similar the mix of species in those habitats will be.

Sticky Monkeyflower

The flowers of Sticky Monkeyflower contain a mix of microbes that live on nectar. A new study shows how microbial diversity changes between flowers. (Photo by Kathy Keatley Garvey)

UC Davis Mouse Biology Program Developing “Green” Mouse House

By Dawn Rowe

The UC Davis Mouse Biology Program (MBP) has received an award of $414,000 from the National Institutes of Health to move towards sustainable, environment-friendly technology for its high-containment vivarium for mutant mice.  The grant will also improve animal health and welfare, ergonomics for vivarium staff, and operational efficiencies.

Prof. Kent Lloyd, director of the UC Davis Mouse Biology Program, in the lab. Gene-edited and “knockout” mice have become a vital tool in biomedical research. (Karin Higgins/UC Davis photo)

Going ‘green” is a multi-step process that will take place over the next 12 months, and led by Kristin Grimsrud, associate director of vivaria and veterinary care for the program.

Podcast: Science at the Root

In this episode of our Three Minute Egghead podcast, UC Davis plant biologist Siobhan Brady talks about her work on roots.

Roots are the key innovation that allowed plants to conquer the land. They allow a plant to explore its environment, seeking out water and nutrients. A cell type within roots called xylem transports water and also provides support for land plants, allowing them to grow swiftly like a field of corn or reach towering heights of a sequoia.

Brady’s lab is looking at the network of genes that work together to control how xylem cells develop and grow, looking especially at the lab plant Arabidopsis, domestic tomato and its wild relatives, and the African staple crop sorghum.