Crowdsourced Game Aims to Find Solutions to Aflatoxin

Mars, Inc., UC Davis and partners have launched a crowdsourcing initiative to solve the problem of aflatoxin contamination of crops. A series of aflatoxin puzzles will go online on Foldit, a platform that allows gamers to explore how amino acids are folded together to create proteins. The puzzles provide gamers with a starting enzyme that has the potential to degrade aflatoxin. Gamers from around the world then battle it out to redesign and improve the enzyme so that it can neutralize aflatoxin. Successful candidates from the computer game will be tested in the laboratory of Justin Siegel, assistant professor of chemistry, biochemistry and molecular medicine at UC Davis.

Fabric from Fermented Tea in the Biomaker Lab

The Molecular Prototyping and BioInnovation Laboratory, or “Biomaker Lab” at UC Davis is a place where students can try out their ideas and develop their own projects in biotechnology. It reflects as “maker culture”  that is well-established in engineering, and growing in biological sciences.

“Kombucha couture” clothes made by artist Sacha Laurin (center) for Paris Fashion Week and National Geographic magazine. With Laurin are, from left, models Ghazal Gill, Grace Sanders and Ericah Howard, and reporter Bethany Crouch of CBS13 and Good Day Sacramento.

From a Student Competition to a Potential Treatment for Celiac Disease

Synthetic DNA Approach is Key to Startup’s New Drug

By Lisa Howard

The way Justin Siegel describes it, ordering synthetic DNA is almost as easy as ordering a pair of shoes online.

“You just type it in — or if the protein has been sequenced at one point, we can copy and paste — order it, and it shows up five days later.”

UC Davis chemist Justin Siegel is a co-founder of PvP Biologics. The company is developing a new treatment for celiac disease, an autoimmune disorder triggered by ingesting gluten. (UC Davis/Karin Higgins)

“Insect Allies” Enlisted to Protect Maize Crops from Pests

Researchers at UC Davis, the Boyce Thompson Institute (BTI) at Cornell University, the University of Minnesota and Iowa State University have received a four-year, $10.3 million “Insect Allies” award from the Defense Advance Research Projects Agency (DARPA) to engineer viruses carried by insects  that can help in combatting disease, drought, and other yield-reducing stresses in maize.

Corn leaf aphids feeding on maize. The VIPER “Insect Allies” project funded by DARPA will study using viruses carried by such insects to make mature maize plants resistant to pests. Photo by Meena Haribal.

DNA Sequencer Gifted to African Orphan Crops Consortium

By Diane Nelson

The bioinformatics company Illumina has donated a state-of the-art DNA sequencer to a global plant-breeding effort to fight malnutrition and poverty in Africa by improving the continent’s traditional crops. UC Davis is partnering in the African Orphan Crop Consortium, which is working to map and make public the genomes of 101 indigenous African foods.

These “orphan” crops are crucial to African livelihood and nutrition, but have been mostly ignored by science and seed companies because they are not traded internationally like commodities such as rice, corn, and wheat.

UC Davis Scientists Boost Production in Green Cell Factories

By Becky Oskin

Cyanobacteria, one of Earth’s oldest life forms, offer a promising new source of petroleum-free fuels and chemicals. However, economies of scale currently make it challenging for these tiny creatures to compete with fossil fuels. Now, scientists at UC Davis are closer to meeting these challenges with a new advance that improves the production and growth rate of cyanobacteria.

Cyanobacteria culture

UC Davis chemist Shota Atsumi is engineering these cyanobacteria to produce biofuels. (Photo by T.J. Ushing)

Visiting scholar Masahiro Kanno, graduate student Austin Carroll and chemistry professor Shota Atsumi introduced new genetic pathways into cyanobacteria that could help make microbe-based chemical production systems smaller and easier to operate.

Engineering Alums’ Startup To Make Transgenics Easier

By Holly Ober

Two UC Davis graduates have started a company incubated in the TEAM manufacturing facility at the UC Davis Department of Biomedical Engineering.

Arshia Firouzi and Gurkern Sufi met in 2011 as Freshmen living in Tercero Dormitories at UC Davis and quickly became friends. Arshia majored in Electrical Engineering and Gurkern in Biotechnology, and they worked with the mentorship of Professor Marc Facciotti to explore their shared interest in the intersection of electronics and biology. In 2015 they won a VentureWell grant for a research project, which they pursued in TEAM’s Molecular Prototyping and Bioinnovation Laboratory. By the end of their project, they had come up with an idea that grew into a company that could usher in a new era for laboratories all over the world.

Hepatitis virus-like particles as potential cancer treatment

UC Davis researchers have developed a way to use the empty shell of a Hepatitis E virus to carry vaccines or drugs into the body. The technique has been tested in rodents as a way to target breast cancer, and is available for commercial licensing through UC Davis Office of Research.

Hepatitis E virus is feco-orally transmitted, so it can survive passing through the digestive system, said Marie Stark, a graduate student working with Professor Holland Cheng in the UC Davis Department of Molecular and Cell Biology.

How antiviral from Hepatitis C could damage other viruses

A new virus-killing peptide springs from an unexpected source: another virus, Hepatitis C.

Now biomedical engineers at UC Davis and Nanyang Technological University, Singapore show how the HCV alpha-helical (AH) peptide can make holes in the types of membranes that surround viruses. The work is published Jan. 5 in Biophysical Journal.

HCV-AH is known to be active against a wide range of viruses including West Nile, dengue, measles and HIV.

The HCV-AH peptide appears to target an Achilles’ heel common to many viruses, most likely a property of the lipid coating or envelope, said study author Atul Parikh, professor of biomedical engineering at UC Davis. That means that it’s less likely that viruses can readily evolve to become resistant to the peptide.

iGEM competition stretches student researchers

By Pat Bailey

As 2015 draws to a close, a team of UC Davis undergraduates can look back with pride and a sigh of relief on one of the most grueling but rewarding experiences of their college career.

Students Gabriel Freund, Muntaha Samad, Andrew Shepherd, Logan Vinson and Joanne Wu, were selected last spring as members of UC Davis’ 2015 iGEM (International Genetically Engineered Machines) team. They were joined by Andrew Michelmore, who is from Davis but attends Santa Clara University.

Gabriel Freund in the lab

Gabriel Freund in the lab