Livestreaming From The Sea Floor

The Schmidt Ocean Institute R/V Falkor is exploring hydrothermal vents off the coast of Mexico. (Schmidt Ocean Institute)

Robert Zierenberg, professor emeritus of geology at UC Davis, is currently Chief Scientist on the R/V Falkor, on a cruise exploring hydrothermal vents off the time of Baja, Mexico. The Falkor, owned by the Schmidt Ocean Institute, is using remote operated vehicles to explore the newly discovered vents and live  streaming the dives online.

Information on the cruise can be found on the SOI web site and the scientists onboard are posting blogs in both English and Spanish about their research on the site.

How Do You Make an Earth-like Planet?

Astronomers have spotted many Earth-like worlds around other stars, but are these exoplanets really similar to our home, and could they support life? The CLEVER Planets project, including UC Davis professor Sarah Stewart, has received a $7.7 million NASA grant to explore how rocky planets like Earth acquire, sustain, and nurture the chemical conditions necessary for life.

Recipe for a planet

Credit: Courtney Dressing, Harvard-Smithsonian Center for Astrophysics

Geoscientists Take Part in Frontera Supercomputer

UC Davis scientists are taking part in a project to build the new “Frontera” supercomputer at the University of Texas at Austin. Funded by a $60 million grant from the National Science Foundation announced last week, Frontera will be the fastest computer at any U.S. university and among the most powerful in the world.

Global simulation of Earth’s mantle convection by the NSF-funded Stampede supercomputer at UT Austin. Computational Infrastructure for Geodynamics, headquartered at UC Davis, is developing software for Earth sciences that will run on the new Frontera system. [Courtesy of ICES, UT Austin]

There and Back Again: Mantle Xenon Has a Story to Tell

By Talia Ogliore

The Earth has been through a lot of changes in its 4.5 billion year history, including a shift to incorporating and retaining volatile compounds such as water, nitrogen and carbon from the atmosphere in the mantle before spewing them out again through volcanic eruptions.

This transport could not have begun much before 2.5 billion years ago, according to researchers at UC Davis and Washington University in St. Louis, published Aug. 9 in the journal Nature.

Playing It Cool at Ocean Vents

“Black smokers,” or high-temperature hydrothermal vents at the bottom of the ocean, have generated a lot of scientific interest since they were discovered forty years ago. By belching hot, mineral-laden water, these vents support communities of microbes and animals far from sunlight.

Octopuses incubate their eggs near the slightly warmer streams of water from cool hydrothermal vents deep in the ocean. Credit: Woods Hole Oceanographic Institution

But not all ocean vents are hot. Cool hydrothermal systems, or cool vents, are much harder to spot because the fluids they release are clear and only a bit warmer than surrounding water. Yet they could play a major role in releasing minerals into the deep ocean.

Curiosity Finds Organic (Carbon-based) Material in Gale Crater, Mars

The Mars Curiosity rover team announced today (June 7) finding organic matter – carbon-based compounds – in three billion year old mudstone sediments from Gale Crater. They also found seasonal changes in the amount of methane in the local atmosphere.

Scientist and Mars rover

Dawn Sumner is a member of the Mars Curiosity team.

Dawn Sumner, professor of earth and planetary sciences at UC Davis, is a member of the Mars Curiosity team and coauthor on the first paper. She helps with sample selection and mission planning and was instrumental in promoting Gale Crater as a landing site for Curiosity.

Volcanologists Watch Kilauea Eruption

Kilauea volcano on the island of Hawaii continues to erupt, creating spectacular footage of lava shooting out of vents and eating cars. While the lava flows are slow moving, and so far no one has been hurt, U.S. Geological Survey scientists were today (May 10) warning that the volcano might erupt explosively, sending large rocks flying through the air.

This 8-10 ton boulder fell on a landing strip about a kilometer from Halema‘uma‘u crater during the eruption of May, 1924 (USGS photo collection).

Model of Blobs in Earth’s Interior Explains Unusual Pacific Volcanism

By Becky Oskin

Deep inside the Earth are two huge blobs of dense rock splayed across the core-mantle boundary. One of the underground structures sits under the South Pacific and the other is underneath Africa.

Plumes rising from these deep masses feed some of the planet’s most spectacular volcanic island chains, such as the Hawaiian Islands. Because the volcanoes fed by the plumes have an unusual chemical fingerprint, scientists think the blobs are made of rock different from the rest of Earth’s mantle. Scientists also know these continent-size structures are not like typical mantle rock because seismic waves pass through the structures more slowly than in the surrounding mantle. This observation gives the two large blobs their jargony name — “large low shear velocity provinces” or LLSVPs.

SuperBlueBloodMoon: New Ideas About Lunar Formation

January 31 will be an early morning show for Moon lovers. Starting about 2.51 a.m. Pacific Time will be a lunar eclipse, or “blood moon” as the Moon passes through Earth’s shadow and picks up a reddish tint. At the same time, the full Moon of Jan. 31 is also a “supermoon” when the Moon is relatively close to Earth and looks bigger and brighter, and a “blue Moon” because it is the second full Moon in one month.

NASA is calling it a “SuperBlueBloodMoon.” (If it’s cloudy where you are, NASA is also running a live stream of the eclipse.)

Looking for New Pollutants in the Ashes of Sonoma

In this month’s episode of Three Minute Egghead, UC Davis graduate student Gabrielle Black talks about collecting samples of ash from neighborhoods burned by last year’s northern California wildfires. The intense heat on a wide range of household items from insulation to electronics may have created new chemical pollutants. Thanks to modern analytic technology, Black plans to search for both known pollutants and new compounds, and compare them to the ashes of burned wild land.

Listen to the podcast here.

More information

Testing Sonoma Ash and Air for Fire-Formed Pollutants

WHAT-NOW Survey (UC Davis Environmental Health Sciences Center)