Clues to Life on Mars in a Polluted California Mine

By Becky Oskin

To find evidence of life on Mars, scientists from UC Davis and the U.S. Geological Survey are chasing clues in Mars-like environments on Earth.

Pollution at the disused Iron Mountain mine near Redding, Calif. turns the soil red and makes the environment Mars-like. Amy Williams, Towson University

The environment at the Iron Mountain mine near Redding, Calif. is similar to Mars. Amy Williams, Towson University

The researchers hope to find rock patterns and textures that are uniquely linked to microscopic life such as bacteria and algae. “It’s challenging to prove that a mineral was made by a living organism,” said lead study author Amy Williams, an assistant professor at Towson University in Towson, Maryland. Williams led the research as a graduate student at UC Davis. Finding similar textures in Mars rocks could bolster confidence that microscopic shapes in Red Planet rocks were formed by living creatures.

Five Things You Probably Didn’t Know About the Soil Microbiome

By Lisa Howard

Soil Actually Has a Microbiome

Gut bacteria have been getting a lot of attention lately (yogurt, anyone?) but it turns out the soil in your own back yard is teeming with microbial life. According to Kate Scow, a professor of soil science and microbial ecology at UC Davis, a quarter teaspoon of soil can easily contain a billion bacterial cells. And she estimates there can be 10,000 to 50,000 different taxa of microbes in a single teaspoon. Soil is one of the most complex and diverse ecosystems on the planet, and it is one that is essential for human life through all the functions it provides: the breakdown of organic materials, food production, water purification, greenhouse gas reduction, and pollution cleanup, just to name a few.

West Coast Scientists Recommend Immediate Action Plan to Combat Ocean Acidification

By Kat Kerlin

Global carbon dioxide emissions are triggering permanent changes to ocean chemistry along the West Coast. Failure to act on this fundamental change in seawater chemistry, known as ocean acidification, is expected to have devastating ecological consequences for the West Coast in the decades to come, warns a multistate panel of scientists, including two from UC Davis Bodega Marine Laboratory.

Their report, issued this week, urges immediate action and outlines a regional strategy to combat the alarming global changes underway. Inaction now will reduce options and impose higher costs later, the report said.

Tide pools at the front line of ocean acidification

By Becky Oskin

Beloved by beach goers, tide pools are also important ecological zones that provide shelter and food for many plants and animals.

Marine life living in tide pools are vulnerable to rising acid levels in seawater, according to new research from UC Davis, the Carnegie Institution for Science and UC Santa Cruz published March 18 in the journal Scientific Reports.

UC Davis joins UC Water effort to improve state’s water security

By Kat Kerlin

It’s hard to manage what you don’t measure.

UC Davis is playing a major role in solving California’s biggest water woes by joining forces across the UC system. The UC Water Security and Sustainability Research Initiative aims to account for all of California’s water, better understand how and where it flows, and help demonstrate how water can be managed differently to allow for greater water security.

Refael Klein flies the Aggie flag at the South Pole

If you think it’s been a bit chilly in the Sacramento region this week, spare a thought for UC Davis alumnus Refael Klein, lieutenant junior grade in the Commissioned Officer Corps of the National Oceanic and Atmospheric Administration. On a recent day temperatures climbed to 35 degrees below zero Fahrenheit at the South Pole, Klein’s home for the next year.

Aggie flag at South Pole

UC Davis alumn Refael Klein at the geographic South Pole, Nov. 2015. Klein will spend a year at the pole studying climate change.

“It’s been a big dream of mine to visit Antarctica,” said Klein in an interview before he left the U.S. “I feel very fortunate to have the opportunity.”

Shale oil fracking, conventional crude drilling produce similar greenhouse gas emissions

By Kat Kerlin

It requires roughly the same level of greenhouse gas emissions to extract shale oil as it does to extract conventional crude oil, according to a pair of studies by UC Davis and Stanford University released this week by the U.S. Department of Energy’s Argonne National Laboratory.

The research analyzed the Eagle Ford shale play in Texas and the Bakken play in North Dakota. These plays are shale formations with low permeability that must be hydraulically fractured to produce oil and gas.

The Eagle Ford Shale in Texas is one of the largest oil and gas producing regions in the country.

The Eagle Ford Shale in Texas is one of the largest oil and gas producing regions in the country.

Grant for natural hazards research at UC Davis centrifuge

The National Science Foundation will award almost $5 million over five years to UC Davis to include the large earthquake-simulating centrifuge at the Center for Geotechnical Modeling as part of the new Natural Hazards Engineering Research Infrastructure program.

The geotechnical centrifuge at UC Davis is the largest of its kind in the world. It is used for scale model experiments of the effect of earthquakes on soils and buildings.

The geotechnical centrifuge at UC Davis is the largest of its kind in the world. It is used for scale model experiments on the effect of earthquakes on soils and buildings.

Oxygen oasis in Antarctic lake reflects distant past

At the bottom of a frigid Antarctic lake, a thin layer of green slime is generating a little oasis of oxygen, a team including UC Davis researchers has found. It’s the first modern replica discovered of conditions on Earth two and a half billion years ago, before oxygen became common in the atmosphere. The discovery is reported in a paper in the journal Geology.

The switch from a planet with very little available oxygen to one with an atmosphere much like today’s was one of the major events in Earth’s history, and it was all because some bacteria evolved the ability to photosynthesize. By about 2.4 billion years ago, geochemical records show that oxygen was present all the way to the upper atmosphere, as ozone.

UC Davis solution for better nitrogen climate modeling adopted by IPCC

By Kat Kerlin

Lawrence Berkeley National Laboratory researchers who provide global climate models to the Intergovernmental Panel on Climate Change have publicly thanked UC Davis associate professor Ben Houlton and his colleagues for creating a new solution to more accurately forecast nitrogen’s effects on global warming.

In an opinion piece in Nature Climate Change, the authors discuss how they have modified their model equations so that they now provide realistic predictions  anchored in Houlton’s benchmarking technique, published in that journal in April.