Crowdsourced Game Aims to Find Solutions to Aflatoxin

Mars, Inc., UC Davis and partners have launched a crowdsourcing initiative to solve the problem of aflatoxin contamination of crops. A series of aflatoxin puzzles will go online on Foldit, a platform that allows gamers to explore how amino acids are folded together to create proteins. The puzzles provide gamers with a starting enzyme that has the potential to degrade aflatoxin. Gamers from around the world then battle it out to redesign and improve the enzyme so that it can neutralize aflatoxin. Successful candidates from the computer game will be tested in the laboratory of Justin Siegel, assistant professor of chemistry, biochemistry and molecular medicine at UC Davis.

From a Student Competition to a Potential Treatment for Celiac Disease

Synthetic DNA Approach is Key to Startup’s New Drug

By Lisa Howard

The way Justin Siegel describes it, ordering synthetic DNA is almost as easy as ordering a pair of shoes online.

“You just type it in — or if the protein has been sequenced at one point, we can copy and paste — order it, and it shows up five days later.”

UC Davis chemist Justin Siegel is a co-founder of PvP Biologics. The company is developing a new treatment for celiac disease, an autoimmune disorder triggered by ingesting gluten. (UC Davis/Karin Higgins)

Haiti Adopts Food Fortification, Following UC Davis Advice

The government of Haiti recently announced a program to fortify wheat flour with iron and folic acid, following a recommendation by UC Davis researchers who calculated that adding these nutrients to wheat flour during milling would prevent infant deaths and improve the health especially of women and children.

Farmers in Haiti’s Artibonite Valley

The new Haitian program, known by its French acronym RANFOSE, is supported by the United States Agency for International Development (USAID). In addition to adding folic acid and iron to wheat flour, it will fortify vegetable oils with Vitamin A and salt with iodine. RANFOSE will increase the availability of high-quality, fortified staple foods across the country and expand the local production and importation of fortified foods, according to a US Embassy news release.

Not All “Good Fats” Are Created Equal

Could too much linoleic acid be making us sick?

By Diane Nelson

There are good and bad fats, nutritionists say. But not all polyunsaturated fats, the so-called good fats, are created equal. A food chemist at UC Davis is exploring whether eating too much linoleic acid—a type of polyunsaturated fat found mainly in vegetable oils—can cause chronic inflammation, headaches, and other health problems.

Food such as salmon that are high in omega-3 fatty acids may be healthier than foods with some vegetable oils. (RafalStachura/Getty Images)

Microbes Could Bring Tea to California

Key to Tea’s Benefits May Be in the Soil

By Becky Oskin

Tea has long been linked to human health benefits like preventing cancer and heart disease. But with hundreds of chemical compounds hidden in tea leaves, it is unclear which substances have the strongest effects.

The slew of “healthy” chemicals in tea varies with the variety of plant, how and where it is grown, and how the leaves are processed. Even soil bacteria contribute to a plant’s chemical profile, including its color, taste and aroma.

Industry Supports UC Davis Coffee Research

The Research Center of the Specialty Coffee Association (SCA) is teaming up with the UC Davis Coffee Center to embark on a two-year project to re-evaluate the scientific assumptions, measurement tools, sensory information, and – most importantly – consumer research that forms the foundation of the coffee industry’s fundamental understanding of coffee brewing.

Students in the UC Davis “Design of Coffee” class learn engineering principles from roasting and brewing coffee.

This research is underwritten with funding from Breville, which produces high-end appliances, including coffee and tea equipment.

Five Things You Probably Didn’t Know About the Soil Microbiome

By Lisa Howard

Soil Actually Has a Microbiome

Gut bacteria have been getting a lot of attention lately (yogurt, anyone?) but it turns out the soil in your own back yard is teeming with microbial life. According to Kate Scow, a professor of soil science and microbial ecology at UC Davis, a quarter teaspoon of soil can easily contain a billion bacterial cells. And she estimates there can be 10,000 to 50,000 different taxa of microbes in a single teaspoon. Soil is one of the most complex and diverse ecosystems on the planet, and it is one that is essential for human life through all the functions it provides: the breakdown of organic materials, food production, water purification, greenhouse gas reduction, and pollution cleanup, just to name a few.

Changes In Breast Milk Sugars Impact Babies’ Health And Growth

By Pat Bailey

A UC Davis-led study of nursing mothers in The Gambia shows how environment changes breast milk content

In a newly published study, UC Davis researchers and their colleagues, paint the picture of an elegant web of  cause-and-effect that connects climate, the breast milk of nursing moms, gut microbes and the health of breast fed infants.

The research is part of a long-running. cross-disciplinary project at UC Davis studying milk and its role in nutrition. For example, last year UC Davis scientists and colleagues at Washington University St. Louis worked with both children and animal models to show how milk compounds could alter gut microbe composition and affect health. UC Davis researchers also led a consortium to study the “milk genome,” the collection of all genes related to producing milk.

Grounds For Concern: Is Your Coffee Consistent?

UC Davis entomologist Christian Nansen trained some high-tech analysis on coffee beans, showing that brands were not consistent in content. Photo: Kathy Garvey

UC Davis entomologist Christian Nansen trained some high-tech analysis on coffee beans, showing that brands were not consistent in content. Photo: Kathy Garvey

By Kathy Keatley Garvey

If your particular brand of coffee doesn’t seem to taste the same from week to week or month to month, you may be  right. And it’s not you, it’s the coffee beans.

Agricultural entomologist Christian Nansen of the UC Davis Department of Entomology and Nematology and four colleagues analyzed 15 brands of roasted coffee beans, purchased at an area supermarket on two dates about six months apart, and using hyperspectral imaging technology, found “they were all over the board.”

UC Davis scientists explore the microbiome

Today’s White House announcement of the National Microbiome Initiative will bring new funding and attention to better understand the billions of microbes that swarm around in and around us and probably play an important role in our health, food and environment. At UC Davis, many scientists are already exploring this hidden world. Here are a few of them.

Jonathan Eisen is one of the pioneers of studying microbe communities through genetic sequencing. His lab is involved in understanding the complete “Tree of Life,” and projects on microbial communities associated with buildings, as well as communities on different plants and animals, including people, dogs and cats. A prolific blogger, Eisen regularly calls out examples of excessive microbiome hype.