NSF Grant Funds Math For National Security

Applying mathematics to detect chemical weapons, hidden explosives or other threats is the goal of an ongoing project at the UC Davis Department of Mathematics, supported by grants from the National Science Foundation.

Resolving blurred image with math

Blind deconvolution is a mathematical method to clarify a blurred image without knowledge of the original image, or how it was blurred. Top, original image; bottom, blurred image after blind deconvolution (Original image by Steve Byland).

Threat detection involves math at a range of levels, said Professor Thomas Strohmer, who leads the project. It can include quickly processing large amounts of data, coordinating multiple sensors, or extracting clarity from background noise.

New Type of Insulin-Producing Cell Discovered

Possible new route to regenerating function lost in diabetes

In people with type I diabetes, insulin-producing beta cells in the pancreas die and are not replaced. Without these cells, the body loses the ability to control blood glucose. Researchers at the University of California, Davis have now discovered a possible new route to regenerating beta cells, giving insight into the basic mechanisms behind healthy metabolism and diabetes. Eventually, such research could lead to better treatment or cures for diabetes.

Engineering Alums’ Startup To Make Transgenics Easier

By Holly Ober

Two UC Davis graduates have started a company incubated in the TEAM manufacturing facility at the UC Davis Department of Biomedical Engineering.

Arshia Firouzi and Gurkern Sufi met in 2011 as Freshmen living in Tercero Dormitories at UC Davis and quickly became friends. Arshia majored in Electrical Engineering and Gurkern in Biotechnology, and they worked with the mentorship of Professor Marc Facciotti to explore their shared interest in the intersection of electronics and biology. In 2015 they won a VentureWell grant for a research project, which they pursued in TEAM’s Molecular Prototyping and Bioinnovation Laboratory. By the end of their project, they had come up with an idea that grew into a company that could usher in a new era for laboratories all over the world.

New Steps in the Meiosis Chromosome Dance

Where would we be without meiosis and recombination? For a start, none of us sexually reproducing organisms would be here, because that’s how sperm and eggs are made. And when meiosis doesn’t work properly, it can lead to infertility, miscarriage, birth defects and developmental disorders.

Neil Hunter’s laboratory at the UC Davis College of Biological Sciences is teasing out the complex details of how meiosis works. In a new paper published online Jan. 6 in the journal Science, Hunter’s group describes new key players in meiosis, proteins called SUMO and ubiquitin and molecular machines called proteasomes. Ubiquitin is already well-known as a small protein that “tags” other proteins to be destroyed by proteasomes (wood chippers for proteins). SUMO is a close relative of ubiquitin.

World’s First Total-Body PET Scanner Takes A Big Step Forward

The UC Davis-based EXPLORER consortium, which aims to build a revolutionary total-body PET (positron emission tomography) scanner, has announced the selection of two industry partners to help build the prototype device. They are United Imaging Healthcare America, a North American subsidiary of Shanghai United Imaging Healthcare, and SensL Technologies of Cork, Ireland.

Positron emission tomography, or PET, scanning uses short-lived radioactive tracers to show how organs and tissues are functioning in the body, while magnetic resonance imaging (MRI) and computed tomography (CT) scans mostly show anatomy. PET scans are widely used to diagnose and track a variety of illnesses, including cancer, heart disease and Alzheimer’s disease.

Modeling Shows How Social Networks Help Animals Survive

By Mike Gil

Applications like Facebook and Twitter show us, on a daily basis, the power of social networks to influence individual behavior. While wild animals do not surf the web, they are connected with other individuals in shared landscapes, and “share information” through their behavior. But how does this information affect surrounding animals?

The formation of multi-species groups, such as these fish feeding on a coral reef, may be fostered by information sharing. (Heather Hillard)

The formation of multi-species groups, such as these fish feeding on a coral reef, may be fostered by social information sharing. (Heather Hillard)

Physics Nobel for topological phase transitions

The 2016 Nobel Prize for Physics will be shared by David Thouless, F. Duncan Haldane and J. Michael Kosterlitz for their work on peculiar states of matter under extreme conditions. The three used advanced mathematics — specifically topology, the study of shapes — to build theoretical models of matter. Their work has practical implications for understanding superconductors, superfluids and thin magnetic films, and ultimately for new types of devices and technologies.

“This year’s Laureates opened the door on an unknown world where matter can assume strange states,” according to the Nobel Prize citation.

Nobel Medicine Prize for “self-eating”

“Gnothi seauton” or “Know thyself,” said the Ancient Greeks; but they might have also said, “eat yourself.” For biologists, autophagy or “self-eating” is the process that cells use to recycle material inside the cell. It breaks down defective proteins and molecules, disposes of invading viruses and bacteria, provides an energy source when food is lacking and generally keeps cells fit and healthy. Problems in autophagy are implicated in cancer, aging, infectious disease and degenerative disorders.

Yoshinori Ohsumi after hearing he had been awarded the 2016 Nobel Prize in Physiology or Medicine. Photo: Mari Honda

Yoshinori Ohsumi after hearing he had been awarded the 2016 Nobel Prize in Physiology or Medicine.
Photo: Mari Honda

Do Zebra stripes confuse biting flies?

Audio: Listen to this story on our podcast, Three Minute Egghead. 

 

Zebra stripes have fascinated people for millennia, and there are a number of different theories to explain why these wild horses should be so brightly marked. A handful of laboratories around the world – including one lead by UC Davis wildlife biologist Tim Caro – have been putting these theories to the test. A new paper from Caro’s group, led by Ken Britten at the UC Davis Center for Neuroscience, puts a hole in one idea: that the stripes confuse biting flies by breaking up polarized light.

Three Minute Egghead is our new podcast

We’re adding a new element to the Egghead blog this month with Three Minute Egghead, a podcast about research at UC Davis. While we figure out a few details about RSS feeds and XML, I’ll be posting these audio files to the Egghead blog, usually with an accompanying blog post.

Our first piece is about two UC Davis computer scientists who are using data from the open-source programming website GitHub to learn about coder’s work habits and in particular, how multitasking affects productivity.

Study author Bogdan Vasilescu will be presenting the study at the International Conference on Software Engineering in Austin, Texas tomorrow, May 20.