Thermal Transistor Handles Heat at the Nanoscale

By Andrew Myers

You’ve felt the heat before — the smartphone that warms while running a navigation app or the laptop that gets too hot for your lap.

The heat produced by electronic devices does more than annoy users. Heat-induced voids and cracking can cause chips and circuits to fail.

Schematic

Schematic of the experimental thermal transistor. A slice of molybdenum disulfide (MoS2) sits on a piece of silicon dioxide, bathed in a solution of lithium ions. (Sood et al, Nature Communications)

Diagnosing and Treating Personality Disorders Needs a Dynamic Approach

By Karen Nikos-Rose

Someone who is “neurotic” does not necessarily show anger or anxiety in a given situation, even though those are generally accepted traits of a person with that personality style.

New UC Davis research suggests that lumping those with personality disorders into a package of traits should be left behind for more dynamic analysis instead. Those who study and treat people with personality disorders need to more deeply look at personality dynamics and variation over time, not just box people into specific categories or traits.

UC Davis psychologist Chris Hopwood wants to take a more dynamic view of personality traits and disorders.

Grants for Quantum Information Science

The U.S. Department of Energy recently announced $218 million in new grants for “Quantum Information Science” and researchers with the Center for Quantum Mathematics and Physics (QMAP) at UC Davis are among the recipients.

The QMAP initiative at UC Davis is aimed at fundamental research in theoretical and mathematical physics.

Professors Veronika Hubeny and Mukund Rangamani were awarded $348,000 over two years for work on “Entanglement in String Theory and the Emergence of Geometry.” They will explore connections between the nature of spacetime, quantum entanglement and string theory. Entanglement, famously described by Einstein as “spooky action at a distance,” is a phenomenon in quantum physics where the properties of pairs of particles are correlated even when they are widely separated.

Gene Discovery Pushes Back Origins of Insect Sense of Smell

By Kathy Keatley Garvey

Doctoral candidate Philipp Brand and his colleagues at the University of California, Davis, had just finished compiling the genome, or complete set of genetic material of the firebrat — a tiny wingless, nocturnal insect found throughout much of the world — when something surprised him.

Adult firebrat (left) and developmental stages. Firebrats are among the most ancient types of insects and can be pests attacking paper and fabrics. Photo by Dong-Hwan Choe, UC IPM.

There they were–odorant receptor genes, the scent-detecting genes thought to have evolved with winged insects more than 400 million years ago. But this groundbreaking discovery indicates they evolved millions of years earlier.

New Insight Into Why Pierce’s Disease Is So Deadly to Grapevines

photo of grapeleaf

Symptoms of Pierce’s Disease on a grapevine.(Jack Kelly Clark / UCANR)

By Amy Quinton

Scientists are gaining a better understanding of Pierce’s disease and how it affects grapevines. The disease, which annually costs California more than $100 million, comes from a bacterium called Xylella fastidiosa. While the bacterium has been present in the state for more than 100 years, Pierce’s disease became a more serious threat to agriculture with the arrival of the glassy-winged sharpshooter insect, which can carry the bacterium from plant to plant.

Could Prison Studies End the Salt Wars?

Medical research studies involving prison inmates have a bad reputation, but now a group of nutrition researchers proposes to use prisoners to answer a long running question in nutrition: what is the connection between salt intake and health? They recently published their proposal in the journal Hypertension, reported by Gina Kolata in the New York Times.

Arguments over the role of dietary salt in heart health — the “Salt Wars” — have been raging for years. David McCarron, a nephrologist and former research affiliate with UC Davis’s Department of Nutrition is a prominent “Salt Skeptic,” arguing that Americans eat about the same amount of salt now as 40 years ago, and that salt intake in humans is regulated by the brain, not by how much is added to food.

Looking for New Pollutants in the Ashes of Sonoma

In this month’s episode of Three Minute Egghead, UC Davis graduate student Gabrielle Black talks about collecting samples of ash from neighborhoods burned by last year’s northern California wildfires. The intense heat on a wide range of household items from insulation to electronics may have created new chemical pollutants. Thanks to modern analytic technology, Black plans to search for both known pollutants and new compounds, and compare them to the ashes of burned wild land.

Listen to the podcast here.

More information

Testing Sonoma Ash and Air for Fire-Formed Pollutants

WHAT-NOW Survey (UC Davis Environmental Health Sciences Center)

California Water-Saving Drive Saved Energy, Too

California’s drive to save water during the drought had a double benefit: it saved a lot of energy as well.

Graphs of water and energy use

This interactive website shows how California cities and water districts saved energy and water

In April 2015, Governor Jerry Brown mandated a 25 percent cut in urban water consumption in the face of continuing drought. Water suppliers were required to report their progress to the State Water Resources Control Board. Now analysis of those figures by researchers Edward Spang, Andrew Holguin and Frank Loge at the UC Davis Center for Water-Energy Efficiency shows that while the state came within 0.5 percent of the water conservation goal, California also saved 1830 GigaWatt-Hours of energy — enough to power more than 270,000 homes.

Supercomputer Simulates Dynamic Magnetic Fields of Jupiter, Earth, Sun

By Becky Oskin

As the Juno space probe approached Jupiter in June last year, researchers with the Computational Infrastructure for Geodynamics’ Dynamo Working Group were starting to run simulations of the giant planet’s magnetic field on one of the world’s fastest computers. While the timing was coincidental, the supercomputer modeling should help scientists interpret the data from Juno, and vice versa.

Video: Simulation of Jupiter’s magnetic fields 

“Even with Juno, we’re not going to be able to get a great physical sampling of the turbulence occurring in Jupiter’s deep interior,” Jonathan Aurnou, a geophysics professor at UCLA who leads the geodynamo working group, said in an article for Argonne National Laboratory news. “Only a supercomputer can help get us under that lid.”

New Technique Makes Light Metallic Nanofoam

By Becky Oskin

A simple method for manufacturing extremely low-density palladium nanofoams could help advance hydrogen storage technologies, reports a new study from the University of California, Davis.

Palladium nanofoam

UC Davis physicists Dustin Gilbert, Kai Liu and colleagues have come up with a new method to make a nanofoam of palladium. The foamy metal could be used to store hydrogen in vehicles or for other purposes. (Image credit: Dustin Gilbert and Kai Liu, UC Davis)