UC Davis Mouse Biology Program Developing “Green” Mouse House

By Dawn Rowe

The UC Davis Mouse Biology Program (MBP) has received an award of $414,000 from the National Institutes of Health to move towards sustainable, environment-friendly technology for its high-containment vivarium for mutant mice.  The grant will also improve animal health and welfare, ergonomics for vivarium staff, and operational efficiencies.

Prof. Kent Lloyd, director of the UC Davis Mouse Biology Program, in the lab. Gene-edited and “knockout” mice have become a vital tool in biomedical research. (Karin Higgins/UC Davis photo)

Going ‘green” is a multi-step process that will take place over the next 12 months, and led by Kristin Grimsrud, associate director of vivaria and veterinary care for the program.

UC Davis Joins Initiative to Fight Malaria in Africa

img6102p58b

Scientists hope to control the spread of malaria using genetically modified mosquitoes that are resistant to the parasite.

By Trina Wood

UC Davis vector biologist Greg Lanzaro is taking part in the newly-announced UC Irvine Malaria Initiative to genetically engineer new strains of mosquitoes to fight malaria in Africa. The project, led by UCI’s pioneering vector biologist Anthony James, will bring together experts in molecular biology, entomology, public health and community engagement from across the UC system.

NSF Grant Funds Math For National Security

Applying mathematics to detect chemical weapons, hidden explosives or other threats is the goal of an ongoing project at the UC Davis Department of Mathematics, supported by grants from the National Science Foundation.

Resolving blurred image with math

Blind deconvolution is a mathematical method to clarify a blurred image without knowledge of the original image, or how it was blurred. Top, original image; bottom, blurred image after blind deconvolution (Original image by Steve Byland).

Threat detection involves math at a range of levels, said Professor Thomas Strohmer, who leads the project. It can include quickly processing large amounts of data, coordinating multiple sensors, or extracting clarity from background noise.

New Type of Insulin-Producing Cell Discovered

Possible new route to regenerating function lost in diabetes

In people with type I diabetes, insulin-producing beta cells in the pancreas die and are not replaced. Without these cells, the body loses the ability to control blood glucose. Researchers at the University of California, Davis have now discovered a possible new route to regenerating beta cells, giving insight into the basic mechanisms behind healthy metabolism and diabetes. Eventually, such research could lead to better treatment or cures for diabetes.

Engineering Alums’ Startup To Make Transgenics Easier

By Holly Ober

Two UC Davis graduates have started a company incubated in the TEAM manufacturing facility at the UC Davis Department of Biomedical Engineering.

Arshia Firouzi and Gurkern Sufi met in 2011 as Freshmen living in Tercero Dormitories at UC Davis and quickly became friends. Arshia majored in Electrical Engineering and Gurkern in Biotechnology, and they worked with the mentorship of Professor Marc Facciotti to explore their shared interest in the intersection of electronics and biology. In 2015 they won a VentureWell grant for a research project, which they pursued in TEAM’s Molecular Prototyping and Bioinnovation Laboratory. By the end of their project, they had come up with an idea that grew into a company that could usher in a new era for laboratories all over the world.

New Steps in the Meiosis Chromosome Dance

Where would we be without meiosis and recombination? For a start, none of us sexually reproducing organisms would be here, because that’s how sperm and eggs are made. And when meiosis doesn’t work properly, it can lead to infertility, miscarriage, birth defects and developmental disorders.

Neil Hunter’s laboratory at the UC Davis College of Biological Sciences is teasing out the complex details of how meiosis works. In a new paper published online Jan. 6 in the journal Science, Hunter’s group describes new key players in meiosis, proteins called SUMO and ubiquitin and molecular machines called proteasomes. Ubiquitin is already well-known as a small protein that “tags” other proteins to be destroyed by proteasomes (wood chippers for proteins). SUMO is a close relative of ubiquitin.

Modeling Shows How Social Networks Help Animals Survive

By Mike Gil

Applications like Facebook and Twitter show us, on a daily basis, the power of social networks to influence individual behavior. While wild animals do not surf the web, they are connected with other individuals in shared landscapes, and “share information” through their behavior. But how does this information affect surrounding animals?

The formation of multi-species groups, such as these fish feeding on a coral reef, may be fostered by information sharing. (Heather Hillard)

The formation of multi-species groups, such as these fish feeding on a coral reef, may be fostered by social information sharing. (Heather Hillard)

Nobel Medicine Prize for “self-eating”

“Gnothi seauton” or “Know thyself,” said the Ancient Greeks; but they might have also said, “eat yourself.” For biologists, autophagy or “self-eating” is the process that cells use to recycle material inside the cell. It breaks down defective proteins and molecules, disposes of invading viruses and bacteria, provides an energy source when food is lacking and generally keeps cells fit and healthy. Problems in autophagy are implicated in cancer, aging, infectious disease and degenerative disorders.

Yoshinori Ohsumi after hearing he had been awarded the 2016 Nobel Prize in Physiology or Medicine. Photo: Mari Honda

Yoshinori Ohsumi after hearing he had been awarded the 2016 Nobel Prize in Physiology or Medicine.
Photo: Mari Honda

California’s wildflowers losing diversity in face of warmer, drier winters

By Kat Kerlin

Native wildflowers in California are losing species diversity after multiple years of drier winters, according to a study from the University of California, Davis, which provides the first direct evidence of climate change impacts in the state’s grassland communities.

The study, published in the journal Proceedings of the National Academy of Sciences, is based on 15 years of monitoring about 80 sampling plots at McLaughlin Reserve, part of UC Davis’ Natural Reserve System.

Drought and climate changes are reducing the diversity of California's grassland wildflowers. (Susan Harrison)

Drought and climate changes are reducing the diversity of California’s grassland wildflowers. (Catherine E. Koehler/UC McLaughlin Reserve)

Death in the tide pools: Rapid die-off of urchins and sea stars a grim warning of climate change

By Kat Kerlin

In August 2011, scientists at the UC Davis Bodega Marine Laboratory walked into their labs to a strange, disturbing sight: Thousands of purple sea urchins and other marine invertebrates were dead in their tanks, which are fed directly by seawater. Outside, the tea-colored ocean washed up carcasses of red abalone, large sea stars, and football-sized, snail-like chitons.

Less conspicuous—but even more heavily impacted as a population—were the millions of purple sea urchins and tiny sea stars that died along a 62-mile stretch of coast in Northern California, according to a UC Davis-led study published in the journal PLOS ONE that documents the die-off.