Investigating the Seagrass Microbiome

By Karley Marie Lujan

Seagrass carpets the seafloor creating a unique and vital ecosystem in shallow marine environments. Sea turtles graze on seagrass leaves while smaller organisms seek refuge in the green fields but, on the microscopic level, seagrass is also home to microbial communities. Such microbes compose the seagrass microbiome and potentially play a role in seagrass ecology.

Turtle and seagrass

Sea turtles and other marine animals browse on seagrass meadows. (NOAA photo)

UC Davis graduate student Cassie Ettinger identifies and characterizes seagrass-associated microbial communities. A study published last year in the journal PeerJ suggests how understanding the role of these microbes could reveal new information about seagrass sulfur cycling and establish seagrass as a model organism.

Taking Cues From Speech Recognition, New Machine Learning Algorithm Finds Patterns in RNA Structures

By Greg Watry

Software inspired by speech recognition technology could help scientists understand the secret language inside cells. A machine learning algorithm called patteRNA, designed by UC Davis researchers, rapidly mines ribonucleic acid, commonly called RNA, for specific structures, providing a new method to establish links between structure, function and disease.

The study, co-authored by integrative genetics and genomics Ph.D. student Mirko Ledda and Assistant Professor Sharon Aviran, UC Davis Genome Center, appears in Genome Biology.

Deciphering the biological role of RNA structures

RNA is essential to all biological processes, from gene expression and regulation to protein synthesis. While DNA stores an organism’s genetic information, RNA puts that genetic information to use.

How Population Genetics Can Help Breed a Hardier Honey Bee

by Greg Watry

The western honey bee (Apis mellifera), the world’s most important pollinator for agriculture, is facing a crisis. Parasitic mites, colony collapse and climate change threaten hives. California, as the seasonal home of nearly half of the continental United States’ managed honey bee colonies, is a prime location for monitoring bee populations. And honey bee health, key to the nation’s largest fresh produce economy, is vital to the Golden State.

A foraging honeybee. Photo by Kathy Keatley Garvey.

One Place Like Home: Space Station Has Same Microbes as Your House

By Carole Gan

UC Davis microbiologists have analyzed swabs taken by astronauts on the International Space Station – and found pretty much the same types of microbes as in a home on Earth, according to an analysis published today (Dec. 5) in the journal PeerJ.

The International Space Station is interesting to scientists studying the microbial ecology of buildings because it is a “building” with very few ways to bring microbes in or out.

Citizen science and Project MERCURRI

The work was part of Project MERCCURI, a collaboration between UC Davis and other organizations including Science Cheerleader, a group of current and former professional cheerleaders pursuing careers in science and math.

Humans Gathered Grapes Long Before They Cultivated Them

By Diane Nelson

About 22,000 years ago, as the ice sheets that consumed much of North America and Europe began retreating, humans started to eat a fruit that today brings joy to millions of wine drinkers around the world: grapes.

People have been making wine from grapes for at least 8,000 years, but genetic evidence shows that humans influenced grape vines long before that (Gregory Urquiaga/UC Davis).

UC Davis Genome Researchers Facilitating NIH Data Commons Pilot

Researchers at the UC Davis School of Veterinary Medicine and Genome Center are taking part in an ambitious NIH initiative to make it easier for scientists to share research data and scientific tools online.

C. Titus Brown is associate professor in the UC Davis School of Veterinary Medicine and Genome Center.

“Harvesting the wealth of information in biomedical data will advance our understanding of human health and disease,” said NIH Director Francis S. Collins in a news release. “However, poor data accessibility is a major barrier to translating data into understanding. The NIH Data Commons Pilot Phase is an important effort to remove that barrier.”

See-through Zebrafish May Hold Clues to Ovarian Cancer

by Greg Watry

For thousands of years, animals have helped humans advance biomedical research. Early Greeks, such as Aristotle and Galen, studied animals to gain insights into anatomy, physiology and pathology. Today, model organisms, like mice, help researchers understand human diseases, opening the door to potential defenses and new therapies.

Postdoc Dena Leerberg, and Bruce Draper, associate professor of molecular and cellular biology in the UC Davis College of Biological Sciences, study reproductive development in zebrafish. David Slipher/UC Davis

Hear This: Knockout Mice Show Genes Linked to Deafness

Fifty-two newly discovered genes that are critical for hearing have been found by testing gene-modified ‘knockout’ mice. The newly identifed genes will provide insights into the causes of hearing loss in humans. The study published Oct. 12 in Nature Communications was carried out by the International Mouse Phenotyping Consortium (IMPC), which includes the Mouse Biology Program at the University of California, Davis.

Prof. Kent Lloyd, director of the UC Davis Mouse Biology Program, in the lab. Gene-edited and “knockout” mice have become a vital tool in biomedical research. (Karin Higgins/UC Davis photo)

From a Student Competition to a Potential Treatment for Celiac Disease

Synthetic DNA Approach is Key to Startup’s New Drug

By Lisa Howard

The way Justin Siegel describes it, ordering synthetic DNA is almost as easy as ordering a pair of shoes online.

“You just type it in — or if the protein has been sequenced at one point, we can copy and paste — order it, and it shows up five days later.”

UC Davis chemist Justin Siegel is a co-founder of PvP Biologics. The company is developing a new treatment for celiac disease, an autoimmune disorder triggered by ingesting gluten. (UC Davis/Karin Higgins)

UC Davis Joins DARPA-funded “Safe Genes” Program

Initiative Aims to Support Responsible CRISPR Gene Editing

By Trina Wood

The federal Defense Advanced Research Projects Agency (DARPA) last week announced the Safe Genes program to explore innovative genetic techniques to support bio-innovation and combat biological threats. The effort, supported by a $65 million grant from DARPA over four years, aims to harness gene editing tools in a safe, responsible manner to maximize the benefits of these technologies while minimizing their inherent risks.

Aedes aegypti carries yellow fever, Zika and other viruses. (CDC photo)