Not All “Good Fats” Are Created Equal

Could too much linoleic acid be making us sick?

By Diane Nelson

There are good and bad fats, nutritionists say. But not all polyunsaturated fats, the so-called good fats, are created equal. A food chemist at UC Davis is exploring whether eating too much linoleic acid—a type of polyunsaturated fat found mainly in vegetable oils—can cause chronic inflammation, headaches, and other health problems.

Food such as salmon that are high in omega-3 fatty acids may be healthier than foods with some vegetable oils. (RafalStachura/Getty Images)

UC Davis Launches Cross-Campus Microbiome Initiative

By Ana Lucia Cordova-Kreylos

The UC Davis Office of Research this week (July 10) announced the launch of the Microbiome Special Research Program (SRP), designed to leverage and build upon the broad and deep expertise in microbiome science across the university.

“UC Davis has incredible breadth and depth in microbiome research with over 100 laboratories actively pursuing projects with links to agriculture, environment, energy and human and animal health,” said Cameron Carter, interim vice chancellor for research at UC Davis. “The decision to invest in a platform to empower these teams was obvious given our strength in these areas and our potential to charter new frontiers that address some of our world’s most pressing issues.”

Live-pig Markets and Traders Could Provide Insight to Controlling African Swine Fever

By Trina Wood

Understanding how live pigs are traded between villages and backyard farmers can help health agencies better understand how devastating swine diseases spread, according to a study published recently in the journal PLOS ONE.

Woman with pig

A Georgian pig owner with her animal. Backyard pigs are usually raised for home consumption, and loss of one to disease is a significant blow. Photo credit: FAO

UC Davis Mouse Biology Program Developing “Green” Mouse House

By Dawn Rowe

The UC Davis Mouse Biology Program (MBP) has received an award of $414,000 from the National Institutes of Health to move towards sustainable, environment-friendly technology for its high-containment vivarium for mutant mice.  The grant will also improve animal health and welfare, ergonomics for vivarium staff, and operational efficiencies.

Prof. Kent Lloyd, director of the UC Davis Mouse Biology Program, in the lab. Gene-edited and “knockout” mice have become a vital tool in biomedical research. (Karin Higgins/UC Davis photo)

Going ‘green” is a multi-step process that will take place over the next 12 months, and led by Kristin Grimsrud, associate director of vivaria and veterinary care for the program.

Control of Dengue Fever With Bacteria-Infected Mosquitoes

Virus-suppressing Bacteria Could Control Transmission by Mosquitoes

Mosquitos infected with the bacteria Wolbachia are significantly worse vectors for dengue virus, but how to establish and spread Wolbachia in an urban mosquito population is unclear. A study published May 30 in the open access journal PLOS Biology shows that over time, strategic releases of mosquitoes infected with the dengue-suppressing bacteria may be enough to allow the virus-resistant insects to spread across large cities.

Leading the work are Professor Michael Turelli, UC Davis Department of Evolution and Ecology, and colleagues from Scott O’Neill’s “Eliminate Dengue Program” based at Monash University, Melbourne.

UC Davis Joins Initiative to Fight Malaria in Africa

img6102p58b

Scientists hope to control the spread of malaria using genetically modified mosquitoes that are resistant to the parasite.

By Trina Wood

UC Davis vector biologist Greg Lanzaro is taking part in the newly-announced UC Irvine Malaria Initiative to genetically engineer new strains of mosquitoes to fight malaria in Africa. The project, led by UCI’s pioneering vector biologist Anthony James, will bring together experts in molecular biology, entomology, public health and community engagement from across the UC system.

Successful CRISPR Gene Editing in Non-Human Primates

By Carlos Villatoro

Imagine a world where maladies such as cystic fibrosis, Huntington’s Disease, or sickle cell anemia no longer exist. While the U.S. is far from achieving this lofty goal, it recently came a step closer at the California National Primate Research Center (CNPRC), where scientists have efficiently used CRISPR/Cas9 technology to modify the genes of rhesus macaque embryos.

The research, recently published in the latest edition of Human Molecular Genetics, paves the way for future studies where the possibility of birthing gene-edited monkeys that can serve as models for new therapies is greatly increased.

Study Reveals How Dietary Fats May Contribute To Tumor Growth

By Kathy Keatley Garvey

Researchers in Professor Bruce Hammock’s laboratory at UC Davis are studying mechanisms involved in blocking angiogenesis — the formation of new blood vessels. The findings may lead to new methods for preventing cancer growth and targeting other diseases, the researchers report.

Postdoc Amy Rand is studying how certain fats can affect growth of blood vessels in tumors.

Postdoc Amy Rand is studying how certain fats can affect growth of blood vessels in tumors.

A recently-published study from Hammock’s lab describes a novel lipid-signaling molecule that can change fundamental biological processes involved in human health and disease. It builds on landmark research by the Judah Folkman laboratory of Harvard Medical School, which earlier showed that cutting off blood vessels that feed a cancerous tumor could stop its growth.

New Type of Insulin-Producing Cell Discovered

Possible new route to regenerating function lost in diabetes

In people with type I diabetes, insulin-producing beta cells in the pancreas die and are not replaced. Without these cells, the body loses the ability to control blood glucose. Researchers at the University of California, Davis have now discovered a possible new route to regenerating beta cells, giving insight into the basic mechanisms behind healthy metabolism and diabetes. Eventually, such research could lead to better treatment or cures for diabetes.

Flour, Oil and Bouillon Cubes, Improving Health Worldwide

Nutritionist Looks at Fortifying Staple Foods To Boost Health

By Lisa Howard

Reina Engle-Stone was halfway through her biology degree at Cornell University when she discovered global nutrition.

Her introduction was a nutritional epidemiology class, and almost immediately she was hooked. “You could take biology and apply it to other things. I thought, this is great, this is what I want to do,” she says.

Reina Engle-Stone, assistant professor of nutrition at UC Davis, helps develop programs to fortify staple foods with nutrients.

Reina Engle-Stone, assistant professor of nutrition at UC Davis, helps develop programs to fortify staple foods with nutrients.