Cybersecurity in 2017: What next after the 2016 Election hack?

2016 saw an unprecedented use of cyberattacks during a U.S. presidential election. According to the U.S. Department of Homeland Security and the Office of the Director of National Intelligence, the Russian government directed theft of emails and release of information in an apparent attempt to influence the election.

What does this mean for the coming year? I asked Professors Karl Levitt, Matt Bishop, Hao Chen, and Felix Wu of the UC Davis Computer Security Laboratory for some thoughts about cybersecurity in the wake of the 2016 election hack. Here’s what they had to say.

Podcast: Computer Model Is A “Crystal Ball” For E. Coli

In the latest episode of the Three Minute Egghead podcast, Ilias Tagkopoulos talks about a computer model that predicts the metabolism of the bacteria Escherichia coli. While E. coli might be one of the most-studied organisms both in labs and as a cause of disease, there is still much we don’t know about it, he notes.

Tagkopoulos and his team spent two years pulling together all the data they could find on E. coli, from DNA sequences to metabolism, and assembling it into a single database. They then used computer clusters and the Blue Waters supercomputer to create their model. You can access their data here.

Magneto-ionics could be a new alternative to electronics

Our electronic devices are based on what happens when different materials are layered together: “The interface is the device,” as Nobel laureate Herbert Kroemer famously claimed over 40 years ago. Right now, our microchips and memory devices are based on the movement of electrons across and near interfaces, usually of silicon, but with limitations of conventional electronics become apparent, researchers are looking at new ways to store or process information. These “heterostructures” can also find applications in advanced batteries and fuel cells.

Now physicists at UC Davis have observed what’s going on at some of these interfaces as oxygen ions react with different metals, causing drastic changes in magnetic and electronic properties.

Chirp Microsystems waves on touch-free future

Within just a few years, we’ve got used to controlling devices by swiping, scrolling or tapping our fingers on a touch screen. But soon you might not even have to touch anything at all to check your email or play a video – just wave your hand in the air, thanks to ultrasonic technology from Chirp Microsystems, a startup company founded in 2013 by researchers from UC Davis and UC Berkeley.

Chirp’s technology is “disruptive” in the ultrasound area, said David Horsley, professor of electrical and computer engineering at UC Davis and co-founder of the company. Chirp’s ultrasound transducers are smaller and operate with much lower power needs than any currently available.

New results from LUX dark matter detector

Contributed by the LUX Collaboration

The Large Underground Xenon (LUX) dark matter experiment, which operates nearly a mile underground at the Sanford Underground Research Facility (SURF) in the Black Hills of South Dakota, has already proven itself to be the most sensitive dark matter detector in the world. Now, a new set of calibration techniques employed by LUX scientists has again dramatically improved its sensitivity.

Researchers with LUX are looking for WIMPs, weakly interacting massive particles, which are among the leading candidates for dark matter.

UC Davis scientists demonstrate DNA-based electromechanical switch

By AJ Cheline

A team of researchers from the University of California, Davis and the University of Washington have demonstrated that the conductance of DNA can be modulated by controlling its structure, thus opening up the possibility of DNA’s future use as an electromechanical switch for nanoscale computing. Although DNA is commonly known for its biological role as the molecule of life, it has recently garnered significant interest for use as a nanoscale material for a wide-variety of applications.

Guided ultrasound plus nanoparticle chemotherapy cures tumors in mice

By Holly Ober

Thermal ablation with magnetic resonance–guided focused ultrasound surgery (MRgFUS)  is a noninvasive technique for treating fibroids and cancer. New research from UC Davis shows that combining the technique with chemotherapy can allow complete destruction of tumors in mice.

MRgFUS combines an ultrasound beam that heats and destroys tissue with a magnetic resonance imaging to guide the beam and monitor the effects of treatment. The effectiveness of the treatment can be limited by the need to spare normal tissue or critical structures on the tumor margins, as well as the need to eliminate micrometastases.

Magnetic skyrmions at room temperature: New digital memory?

An exotic, swirling object with the sci-fi name of a “magnetic skyrmion” could be the future of nanoelectronics and memory storage. Physicists at UC Davis and the National Institute of Standards and Technology (NIST) have now succeeded in making magnetic skyrmions, formerly found at temperatures close to absolute zero, at room temperature.

“This is a potentially new way to store information, and the energy costs are expected to be extremely low,” said Kai Liu, professor of physics at UC Davis and corresponding author of a paper on the work, published in the journal Nature Communications Oct. 8.

Nanoporous gold sponge makes pathogen detector

By Jocelyn Anderson

Sponge-like nanoporous gold could be key to new devices to detect disease-causing agents in humans and plants, according to UC Davis researchers.

In two recent papers in Analytical Chemistry (here & here), a group from the UC Davis Department of Electrical and Computer Engineering demonstrated that they could detect nucleic acids  using nanoporous gold, a novel sensor coating material, in mixtures of other biomolecules that would gum up most detectors. This method enables sensitive detection of DNA in complex biological samples, such as serum from whole blood.

Bio-shock resistant: New center to apply biology to earthquakes, civil engineering

Taking lessons from nature and biology into civil engineering is the goal of the new Center for Bio-inspired and Bio-mediated Geotechnics, including the University of California, Davis, Arizona State University, New Mexico State University and the Georgia Institute of Technology, and funded with a five-year, $18.5 million grant from the National Science Foundation.

The center’s director will be Edward Kavazanjian, a professor of civil engineering and senior scientist at ASU’s Julie Ann Wrigley Global Institute of Sustainability. The UC Davis team will be headed by Jason DeJong, professor of geotechnical engineering in the Department of Civil and Environmental Engineering.