Protein Synthesis Machinery from Bacterial Consortia in One Shot

By Holly Ober

A new technique developed at UC Davis may have broken the barrier to rapid assembly of pure protein synthesis machinery outside of living cells.

Colored bacteria

E. coli bacteria tagged with different colors produced different mixtures of proteins. Together, the bacterial consortium makes all the proteins needed for mRNA translation/protein synthesis (Fernando Villarreal, UC Davis)

In order to reconstitute cellular reactions outside of biological systems, scientists need to produce the proteins involved. Rapid yet high purity reconstitution of the cellular reactions is critical for the high-throughput study of cellular pathways and cell-free diagnostic tests for various diseases. Reconstituting cellular reactions outside cells, however, requires the separate expression and purification of each protein required to execute the reactions. This process is expensive and time consuming, making the production of more than several proteins at once extremely challenging.

Engineering Alums’ Startup To Make Transgenics Easier

By Holly Ober

Two UC Davis graduates have started a company incubated in the TEAM manufacturing facility at the UC Davis Department of Biomedical Engineering.

Arshia Firouzi and Gurkern Sufi met in 2011 as Freshmen living in Tercero Dormitories at UC Davis and quickly became friends. Arshia majored in Electrical Engineering and Gurkern in Biotechnology, and they worked with the mentorship of Professor Marc Facciotti to explore their shared interest in the intersection of electronics and biology. In 2015 they won a VentureWell grant for a research project, which they pursued in TEAM’s Molecular Prototyping and Bioinnovation Laboratory. By the end of their project, they had come up with an idea that grew into a company that could usher in a new era for laboratories all over the world.