Graphene Layered with Magnetic Materials Could Drive Ultrathin Spintronics

Scientists with instrument

UC Davis project scientist Gong Chen (right) and coauthor Andres Schmid of Lawrence Berkeley Lab with the SPLEEM instrument used for imaging magnetic fields inside materials. Photo by Roy Kaltschmidt/LBL.

Tiny swirling textures in the magnetic fields within layered materials could be a key to replacing disk drives and flash memory in computing devices. Physicists at UC Davis and the Lawrence Berkeley National Laboratory are exploring how these patterns form in materials layered with graphene, an ultrathin form of carbon. A paper on the work was published online May 28 in Nature Materials.

Physics Nobel for topological phase transitions

The 2016 Nobel Prize for Physics will be shared by David Thouless, F. Duncan Haldane and J. Michael Kosterlitz for their work on peculiar states of matter under extreme conditions. The three used advanced mathematics — specifically topology, the study of shapes — to build theoretical models of matter. Their work has practical implications for understanding superconductors, superfluids and thin magnetic films, and ultimately for new types of devices and technologies.

“This year’s Laureates opened the door on an unknown world where matter can assume strange states,” according to the Nobel Prize citation.