Synchrony in Ecology: What Magnets Have To Do With Pistachios

By Kat Kerlin

Did you ever pass an orchard with branches bursting with flowers and wonder how the trees “know” when to blossom or bear fruit all at the same time? Or perhaps you’ve walked through the woods, crunching loads of acorns underfoot one year but almost none the next year.

Pistachios

A new study shows why pistachio trees are like magnets, mathematically speaking.

Scientists from the University of California, Davis, have given such synchronicity considerable thought. In 2015, they developed a computer model showing that one of the most famous models in statistical physics, the Ising model, could be used to understand why events occur at the same time over long distances.

Plant Sciences’ Stable Isotope Facility Marks 20 Years of Service

From improving crop production to tracking mosquitoes, the Stable Isotope Facility in the UC Davis Department of Plant Sciences supports a wide range of research on campus and throughout the world. December 1, 2017 marks the facility’s 20th anniversary and they are holding an open house today to celebrate.

Julian Herszage (left) and Lyndi Low carrying out analysis at the Stable Isotope Facility in the Department of Plant Sciences. The lab carries out analysis of isotopes of hydrogen, carbon, nitrogen, oxygen and sulfur for biological and environmental studies. Photo by Chris Yarnes/UC Davis.

For Seagrass, Biodiversity Is Both a Goal and A Means For Restoration

By Kat Kerlin

Coral reefs, seagrass meadows and mangrove forests work together to make the Coral Triangle of Indonesia a hotspot for marine biodiversity. The system supports valuable fisheries and endangered species and helps protect shorelines. But it is in global decline due to threats from coastal development, destructive fishing practices and climate change.

From left, Jordan Hollarsmith of Hasanuddin University and UC Davis, and Susan Williams and Katie DuBois of UC Davis look at seabed plots in Indonesia. Photo by Christine Sur, UC Davis

Surprise Result: Increasing Dispersal Increases Ecological Diversity

By Kathy Keatley Garvey

A study of microbes that live in the nectar of flowers has turned up an unexpected result that challenges a common assumption in ecology.

It’s been widely assumed that the more easily organisms can disperse between habitats, the more similar the mix of species in those habitats will be.

Sticky Monkeyflower

The flowers of Sticky Monkeyflower contain a mix of microbes that live on nectar. A new study shows how microbial diversity changes between flowers. (Photo by Kathy Keatley Garvey)

Letters to Darwin mark bicentenary

To mark the bicentenary of Charles Darwin’s birth, we asked some UC Davis scientists who study evolution what they would say if they had the opportunity to write a letter to the naturalist. The results are featured on the campus home page today.

Mathematical geneticist Graham Coop regales Darwin with the tale of a gene that links stickleback fish directly to humans.

Geneticist David Begun confides that he and other modern-day scientists still share the sense of wonder that Darwin expressed when he wrote, “ … from so simple a beginning, endless forms most beautiful and most wonderful have been, and are being evolved.”