Breakthrough in Designing a Better Salmonella Vaccine

By Trina Wood

UC Davis researchers announce in the Proceedings of the National Academy of Sciences this week a breakthrough in understanding which cells afford optimal protection against Salmonella infection—a critical step in developing a more effective and safe vaccine against a bacterium that annually kills an estimated one million people worldwide.

Salmonella bacteria (red) invading human cells. Salmonella infections can cause severe disease and current vaccines are inadequate. New work in mouse models shows which cells are responsible for immunity to Salmonella and may lead to improved vaccines. Photo credit: Rocky Mountain Laboratories, NIAID, NIH

“Smart” Immune Cells: Emerging Cancer Therapy Research at UC Davis Boosted with NIH Award

By David Slipher

Assistant Professor Sean Collins, Department of Microbiology and Molecular Genetics in the UC Davis College of Biological Sciences, has received a $1.5 million award from the National Institutes of Health to advance the development of “smart” immune cells for therapies to treat cancer and other diseases. The five-year NIH Director’s New Innovator Award aims to provide new insight into how to engineer immune cells to control their recruitment and response to tumors.

Sean Collins

Assistant professor Sean Collins has received a NIH New Innovator award for work to make cancer therapies safer. Fred Greaves, UC Davis