Study Explores How Fruit Flies Navigate Unstable Convective Air

By Greg Watry

Drosophila melanogaster

The fruit fly Drosophila melanogaster lives in deserts and also urban environments with many hot surfaces and resulting air currents. (Photo: Sanjay Acharya)

When insects migrate over vast distances, many take advantage of a natural phenomenon called thermal convection, which causes flow movement when air at different temperatures interact. Hitching a ride on invisible rollercoasters called convection cells, insects—like aphids and spiders—follow the flow of warm air upwards and cold air downwards.

“They are floating up to 3,000 feet,” said Victor Ortega-Jimenez, an assistant project scientist in the Combes Lab at UC Davis, of this movement. “All these clouds of insects are floating up there and moving in these convection cell patterns.”

“Insect Allies” Enlisted to Protect Maize Crops from Pests

Researchers at UC Davis, the Boyce Thompson Institute (BTI) at Cornell University, the University of Minnesota and Iowa State University have received a four-year, $10.3 million “Insect Allies” award from the Defense Advance Research Projects Agency (DARPA) to engineer viruses carried by insects  that can help in combatting disease, drought, and other yield-reducing stresses in maize.

Corn leaf aphids feeding on maize. The VIPER “Insect Allies” project funded by DARPA will study using viruses carried by such insects to make mature maize plants resistant to pests. Photo by Meena Haribal.