How Plant Cells Build The Wall

By Ann Filmer

Animations and models of plant cell division are part of a new project investigating how plant cells form their distinctive walls.

Cell division is a fundamental aspect of life. Without cell division, living organisms do not grow. The last step of cell division, also called cytokinesis, is uniquely different in plants from that in animals and fungi due to the presence of cell walls in plants.

This 4D time sequence imaging from Georgia Drakakaki’s lab at UC Davis shows how new plant cell walls form between divided plant cells. Green, vesicles forming cell wall and red, cell membranes.

Seeing Plants in Three Dimensions

Scientists are taking a new look at the inner workings of plants by imaging and modeling them in three dimensions.

“We’ve realized tremendous advances in technology for 3-D imaging of leaves,” said Tom Buckley, assistant professor of plant sciences at UC Davis.

Plant scientists are getting new insight by imaging and modeling leaves in three dimensions. (Image: University of Sydney)

Recent developments are summarized in an article in Trends in Plant Sciences, which sprang from a 2017 workshop at the University of Sydney organized by Buckley and Professor Margaret Barbour, University of Sydney.

Shedding Light on the Energy-Efficiency of Photosynthesis

By Amy Quinton

Photosynthesis is one of the most crucial life processes on earth. It’s how plants get their food, using energy from sunlight to convert water and carbon dioxide from the air into sugars. It’s long been thought that more than 30 percent of the energy produced during photosynthesis is wasted in a process called photorespiration.

A new study led by researchers at the University of California, Davis, suggests that photorespiration wastes little energy and instead enhances nitrate assimilation, the process that converts nitrate absorbed from the soil into protein.

Study shows plants may not lose energy during photosynthesis. (Getty Images)

Understanding How Rice Root Microbiome Can Promote Agricultural Growth

By Greg Watry

Your body plays host to a microbial ecosystem that’s ever-evolving, and its composition has implications for your overall health. The same holds true for plants and their microbiomes and the relationship is of pivotal importance to agriculture.

In a paper appearing in PLOS Biology, Joseph Edwards, ’17 Ph.D. in Plant Biology, Professor Venkatesan Sundaresan, Departments of Plant Biology and Plant Sciences and their colleagues tracked root microbiome shifts throughout the life-cycle of rice plants (Oryza sativa). The research could help inform the design of agricultural probiotics by introducing age-appropriate microbes that promote traits like nutrient efficiency, strong roots and increased growth rates in the plants.  

Plant Sciences’ Stable Isotope Facility Marks 20 Years of Service

From improving crop production to tracking mosquitoes, the Stable Isotope Facility in the UC Davis Department of Plant Sciences supports a wide range of research on campus and throughout the world. December 1, 2017 marks the facility’s 20th anniversary and they are holding an open house today to celebrate.

Julian Herszage (left) and Lyndi Low carrying out analysis at the Stable Isotope Facility in the Department of Plant Sciences. The lab carries out analysis of isotopes of hydrogen, carbon, nitrogen, oxygen and sulfur for biological and environmental studies. Photo by Chris Yarnes/UC Davis.

Gene Salad: Lettuce Genome Assembly Published

Represents Most Successful Group of Flowering Plants 

By Pat Bailey

Today (April 12), UC Davis researchers announced in Nature Communications that they have unlocked a treasure-trove of genetic information about lettuce and related plants, releasing the first comprehensive genome assembly for lettuce and the huge Compositae plant family.

Lettuce flower

Lettuce belongs to a large Compositae family of plants. A lettuce flower shows the similarity to plants such as ragweed and sunflowers. (Gregory Urquiaga)

Garden lettuce, or Lactuca sativa, is the plant species that includes a salad bar’s worth of lettuce types, ranging from iceberg to romaine. With an annual on-farm value of more than $2.4 billion, it is the most valuable fresh vegetable and one of the 10 most valuable crops, overall, in the United States.