Deep Underground Neutrino Experiment Breaks Ground

A special groundbreaking was held today (July 21) deep underground in South Dakota. Scientists, engineers and guests turned the first shovelfuls of the 800,000 tons of rock that will be excavated to build the Long Baseline Neutrino Facility (LBNF) at the Sanford Underground Research Facility. The cavern will house a giant detector for the Deep Underground Neutrino Experiment (DUNE).

The goal of DUNE is to better understand neutrinos and their role in the evolution of the universe, including why our universe is made of matter and not antimatter. DUNE will also be able to detect neutrinos from deep space, emitted by supernovae or black holes.

Podcast: Melting Ice and the Quasi Liquid Layer

Water ice is peculiar stuff: Even below freezing, when it should be solid, it has a quasi-liquid layer on the outside. That’s what makes ice slippery. In this month’s Three Minute Egghead podcast, UC Davis chemist Davide Donadio describes his recent research looking at the surface of ice and what it has to do with clouds and air pollution.

https://soundcloud.com/andy-fell/melting-ice

Computer simulation of ice

Computer simulation of the surface of ice shows how layers melt in steps (Credit: Davide Donadio)

More information

Hear more Three Minute Egghead on Soundcloud or iTunes

Related news story: Ice Surface Melts One Step at a Time

Surprise Result: Increasing Dispersal Increases Ecological Diversity

By Kathy Keatley Garvey

A study of microbes that live in the nectar of flowers has turned up an unexpected result that challenges a common assumption in ecology.

It’s been widely assumed that the more easily organisms can disperse between habitats, the more similar the mix of species in those habitats will be.

Sticky Monkeyflower

The flowers of Sticky Monkeyflower contain a mix of microbes that live on nectar. A new study shows how microbial diversity changes between flowers. (Photo by Kathy Keatley Garvey)

Industry Supports UC Davis Coffee Research

The Research Center of the Specialty Coffee Association (SCA) is teaming up with the UC Davis Coffee Center to embark on a two-year project to re-evaluate the scientific assumptions, measurement tools, sensory information, and – most importantly – consumer research that forms the foundation of the coffee industry’s fundamental understanding of coffee brewing.

Students in the UC Davis “Design of Coffee” class learn engineering principles from roasting and brewing coffee.

This research is underwritten with funding from Breville, which produces high-end appliances, including coffee and tea equipment.

For Better Or Worse: Links Between Genetics And Stress

By Diane Nelson

Our genes can influence how we respond to stress. Science shows that some people are more genetically predisposed than others to develop depression and anxiety in response to stressful situations.

UC Davis psychologists Johnna Swartz (left) and Jay Belsky.

UC Davis psychologists Johnna Swartz (left) and Jay Belsky have found that genetic traits that make people vulnerable to stress-related mental health problems, are also those best equipped to respond to positive interventions.

What’s more, researchers say that chronic exposure to stressful conditions—such as poverty, family discord, and poor nutrition—can alter the way genes behave in children and adolescents, making them more susceptible to depression, anxiety, and other negative effects of stress.

UC Davis Joins Initiative to Fight Malaria in Africa

img6102p58b

Scientists hope to control the spread of malaria using genetically modified mosquitoes that are resistant to the parasite.

By Trina Wood

UC Davis vector biologist Greg Lanzaro is taking part in the newly-announced UC Irvine Malaria Initiative to genetically engineer new strains of mosquitoes to fight malaria in Africa. The project, led by UCI’s pioneering vector biologist Anthony James, will bring together experts in molecular biology, entomology, public health and community engagement from across the UC system.

Banker Plants Control Rice Pests

By Kathy Keatley Garvey

Rice farmers seeking to protect their crops from pests without high dependency on pesticides may want to consider the sustainable pest management practice known as the “banker plant system.”

Planting a mix of sesame and Leersia sayanuka grass at the edge of rice fields encourages insects that parasitize a rice pest, the Brown plant hopper. (Photo courtesy of Zhongxian Lu)

Planting a mix of sesame and Leersia sayanuka grass at the edge of rice fields encourages insects that parasitize a rice pest, the Brown plant hopper. (Photo courtesy of Zhongxian Lu)

First-of-its-kind research, published in Scientific Reports by a nine-member team including UC Davis agricultural entomologist Christian Nansen, indicated that attracting alternative hosts for parasitoids of rice insect pests can help protect a rice crop. The players: a grass species, a planthopper, and an egg parasitoid.

Successful CRISPR Gene Editing in Non-Human Primates

By Carlos Villatoro

Imagine a world where maladies such as cystic fibrosis, Huntington’s Disease, or sickle cell anemia no longer exist. While the U.S. is far from achieving this lofty goal, it recently came a step closer at the California National Primate Research Center (CNPRC), where scientists have efficiently used CRISPR/Cas9 technology to modify the genes of rhesus macaque embryos.

The research, recently published in the latest edition of Human Molecular Genetics, paves the way for future studies where the possibility of birthing gene-edited monkeys that can serve as models for new therapies is greatly increased.

Clues to Life on Mars in a Polluted California Mine

By Becky Oskin

To find evidence of life on Mars, scientists from UC Davis and the U.S. Geological Survey are chasing clues in Mars-like environments on Earth.

Pollution at the disused Iron Mountain mine near Redding, Calif. turns the soil red and makes the environment Mars-like. Amy Williams, Towson University

The environment at the Iron Mountain mine near Redding, Calif. is similar to Mars. Amy Williams, Towson University

The researchers hope to find rock patterns and textures that are uniquely linked to microscopic life such as bacteria and algae. “It’s challenging to prove that a mineral was made by a living organism,” said lead study author Amy Williams, an assistant professor at Towson University in Towson, Maryland. Williams led the research as a graduate student at UC Davis. Finding similar textures in Mars rocks could bolster confidence that microscopic shapes in Red Planet rocks were formed by living creatures.

Study Reveals How Dietary Fats May Contribute To Tumor Growth

By Kathy Keatley Garvey

Researchers in Professor Bruce Hammock’s laboratory at UC Davis are studying mechanisms involved in blocking angiogenesis — the formation of new blood vessels. The findings may lead to new methods for preventing cancer growth and targeting other diseases, the researchers report.

Postdoc Amy Rand is studying how certain fats can affect growth of blood vessels in tumors.

Postdoc Amy Rand is studying how certain fats can affect growth of blood vessels in tumors.

A recently-published study from Hammock’s lab describes a novel lipid-signaling molecule that can change fundamental biological processes involved in human health and disease. It builds on landmark research by the Judah Folkman laboratory of Harvard Medical School, which earlier showed that cutting off blood vessels that feed a cancerous tumor could stop its growth.