About Egghead

Egghead is a blog about research by, with or related to UC Davis. Comments on posts are welcome, as are tips and suggestions for posts. General feedback may be sent to Andy Fell. This blog is created and maintained by UC Davis Strategic Communications, and mostly edited by Andy Fell.

Surprise Result: Increasing Dispersal Increases Ecological Diversity

By Kathy Keatley Garvey

A study of microbes that live in the nectar of flowers has turned up an unexpected result that challenges a common assumption in ecology.

It’s been widely assumed that the more easily organisms can disperse between habitats, the more similar the mix of species in those habitats will be.

Sticky Monkeyflower

The flowers of Sticky Monkeyflower contain a mix of microbes that live on nectar. A new study shows how microbial diversity changes between flowers. (Photo by Kathy Keatley Garvey)

DNA Sequencer Gifted to African Orphan Crops Consortium

By Diane Nelson

The bioinformatics company Illumina has donated a state-of the-art DNA sequencer to a global plant-breeding effort to fight malnutrition and poverty in Africa by improving the continent’s traditional crops. UC Davis is partnering in the African Orphan Crop Consortium, which is working to map and make public the genomes of 101 indigenous African foods.

These “orphan” crops are crucial to African livelihood and nutrition, but have been mostly ignored by science and seed companies because they are not traded internationally like commodities such as rice, corn, and wheat.

Paris Soil Carbon Goals Not Feasible, Because of Nitrogen

By Ann Filmer

Goals for carbon reduction from sequestration in soils set in the 2015 Paris Agreement are not feasible, according to an international team of climate scientists. Regardless of whether the U.S. remains part of the Paris climate accord, scientists at the University of California, Davis, are developing additional agricultural methods to offset increases in atmospheric greenhouse gases, thereby reducing the potential for global warming.

Subsurface drip irrigation

Subsurface drip irrigation in a tomato field at UC Davis. This irrigation method saves water, reduces fertilizer use and reduces emissions of nitrous oxide, a greenhouse gas. Photo by Martin Burger, UC Davis.

Podcast: Synestia, a New Type of Planetary Object

In this month’s Three-Minute Egghead, Sarah Stewart and Simon Lock talk about synestias. A synestia is a new type of planetary object, they proposed, formed when a giant collision between planet-size objects creates a mass of hot, vaporized rock spinning with high angular momentum. Synestias could be an important stage in planet formation, and we might be able to find them in other solar systems.

https://soundcloud.com/user-570302262/three-minute-egghead-synestia-a-new-planetary-object?in=user-570302262/sets/three-minute-egghead-a-podcast

More information

News release: Synestia, A New Type of Planetary Object

New Theory Explains How the Moon Got There

Simon Lock’s Synestia Page

UC Davis Mouse Biology Program Developing “Green” Mouse House

By Dawn Rowe

The UC Davis Mouse Biology Program (MBP) has received an award of $414,000 from the National Institutes of Health to move towards sustainable, environment-friendly technology for its high-containment vivarium for mutant mice.  The grant will also improve animal health and welfare, ergonomics for vivarium staff, and operational efficiencies.

Prof. Kent Lloyd, director of the UC Davis Mouse Biology Program, in the lab. Gene-edited and “knockout” mice have become a vital tool in biomedical research. (Karin Higgins/UC Davis photo)

Going ‘green” is a multi-step process that will take place over the next 12 months, and led by Kristin Grimsrud, associate director of vivaria and veterinary care for the program.

Control of Dengue Fever With Bacteria-Infected Mosquitoes

Virus-suppressing Bacteria Could Control Transmission by Mosquitoes

Mosquitos infected with the bacteria Wolbachia are significantly worse vectors for dengue virus, but how to establish and spread Wolbachia in an urban mosquito population is unclear. A study published May 30 in the open access journal PLOS Biology shows that over time, strategic releases of mosquitoes infected with the dengue-suppressing bacteria may be enough to allow the virus-resistant insects to spread across large cities.

Leading the work are Professor Michael Turelli, UC Davis Department of Evolution and Ecology, and colleagues from Scott O’Neill’s “Eliminate Dengue Program” based at Monash University, Melbourne.

Industry Supports UC Davis Coffee Research

The Research Center of the Specialty Coffee Association (SCA) is teaming up with the UC Davis Coffee Center to embark on a two-year project to re-evaluate the scientific assumptions, measurement tools, sensory information, and – most importantly – consumer research that forms the foundation of the coffee industry’s fundamental understanding of coffee brewing.

Students in the UC Davis “Design of Coffee” class learn engineering principles from roasting and brewing coffee.

This research is underwritten with funding from Breville, which produces high-end appliances, including coffee and tea equipment.

Podcast: Science at the Root

In this episode of our Three Minute Egghead podcast, UC Davis plant biologist Siobhan Brady talks about her work on roots.

Roots are the key innovation that allowed plants to conquer the land. They allow a plant to explore its environment, seeking out water and nutrients. A cell type within roots called xylem transports water and also provides support for land plants, allowing them to grow swiftly like a field of corn or reach towering heights of a sequoia.

New Technique Provides Earthquake Risk for Major Cities Worldwide

By Larry O’Hanlon

Scientists have developed snapshots of the likelihood of major earthquakes occurring in megacities around the world using a new statistical approach for estimating earthquake risk. The work will be presented today, May 22 at the joint meeting of the Japan Geoscience Union and the American Geophysical Union in Chiba, Japan.

A “nowcast” for Tokyo. The red thermometer at right shows how far along the Tokyo region is in its cycle of smaller quakes between quakes of at least 6.5 magnitude. (John Rundle, UC Davis)

Wallflower or Center of the Pack? Baboons Find Their Place

By Karen Nikos-Rose

Are you the kind of person who, at a party, tends to be surrounded by friends in the middle of the crowd, or do you prefer to find a quiet corner where you can sit and talk? Recent work by scientists at UC Davis shows that wild baboons behave similarly to humans —  with some animals consistently found in the vanguard of their troop while others crowd to the center or lag in the rear.