About Egghead

Egghead is a blog about research by, with or related to UC Davis. Comments on posts are welcome, as are tips and suggestions for posts. General feedback may be sent to Andy Fell. This blog is created and maintained by UC Davis Strategic Communications, and mostly edited by Andy Fell.

Engineered Yeast Makes Hoppy Flavors

Can you brew a hoppy beer without hops? Beer purists might regard the idea with suspicion, but researchers at UC Berkeley, with some help from UC Davis’ “Pope of Foam,” have shown that you can brew a tasty hoppy beer using gene-edited yeast to replace hop flavors.

According to Charles Denby, a former postdoctoral researcher at UC Berkeley, growing hops uses a lot of water – 50 pints of water to grow enough hops (the crumbly flowers of the hop vine) for a pint of craft beer.

Chemical Messengers, Calcium and Neutrophils

Neutrophils are the most abundant type of white blood cell. They play a vital role in defending us from infections, by engulfing and destroying bacteria and viruses or cancerous cells. A new study by UC Davis engineering student Emmet Francis, working with Professor Volkmar Heinrich in the Department of Biomedical Engineering, adds to our knowledge of how neutrophils are drawn towards infection sites and how they can attack their targets.

First, Francis and Heinrich looked at how isolated neutrophils respond to chemical messengers called anaphylatoxins. These molecules guide immune cells to their targets but can cause severe illness in excessive amounts.

Piezomagnetic Material Changes Magnetic Properties When Stretched

Piezoelectric materials, which generate an electric current when compressed or stretched, are familiar and widely used: think of lighters that spark when you press a switch, but also microphones, sensors, motors and all kinds of other devices. Now a group of physicists has found a material with a similar property, but for magnetism. This “piezomagnetic” material changes its magnetic properties when put under mechanical strain.

Magnetic experiment

Top: A piece of BaFe2As2 is stretched while magnetic measurements are taken (the copper wire coil is part of the NMR device). Lower diagram shows atoms in a plane, with black arrows showing how magnetic spins lie in plane and point in opposite directions. Grey arrows show how the magnetic spin of atoms shifts as the material is stretched.

Podcast: Restored Putah Creek Blooms With Bird Life

Until about twenty years ago, Putah Creek near the UC Davis campus was a dry, trash-filled ditch. Then a lawsuit led to the Putah Creek Accord, which mandated year-round water flows to help protect fish and habitat. In this episode of the Three Minute Egghead podcast, Kat Kerlin hears how restoring water has brought the creek back to life.


More information

Feature story: Little Creek, Big Impact

For more episodes, follow Three Minute Egghead on Soundcloud or subscribe on iTunes.

Kat Kerlin writes about the environment for UC Davis Strategic Communications. Follow her at @UCDavis_Kerlin

Understanding How Rice Root Microbiome Can Promote Agricultural Growth

By Greg Watry

Your body plays host to a microbial ecosystem that’s ever-evolving, and its composition has implications for your overall health. The same holds true for plants and their microbiomes and the relationship is of pivotal importance to agriculture.

In a paper appearing in PLOS Biology, Joseph Edwards, ’17 Ph.D. in Plant Biology, Professor Venkatesan Sundaresan, Departments of Plant Biology and Plant Sciences and their colleagues tracked root microbiome shifts throughout the life-cycle of rice plants (Oryza sativa). The research could help inform the design of agricultural probiotics by introducing age-appropriate microbes that promote traits like nutrient efficiency, strong roots and increased growth rates in the plants.  

Taking Cues From Speech Recognition, New Machine Learning Algorithm Finds Patterns in RNA Structures

By Greg Watry

Software inspired by speech recognition technology could help scientists understand the secret language inside cells. A machine learning algorithm called patteRNA, designed by UC Davis researchers, rapidly mines ribonucleic acid, commonly called RNA, for specific structures, providing a new method to establish links between structure, function and disease.

The study, co-authored by integrative genetics and genomics Ph.D. student Mirko Ledda and Assistant Professor Sharon Aviran, UC Davis Genome Center, appears in Genome Biology.

Deciphering the biological role of RNA structures

RNA is essential to all biological processes, from gene expression and regulation to protein synthesis. While DNA stores an organism’s genetic information, RNA puts that genetic information to use.

‘Food Desert’ Label Often Inaccurate: Lack of a Supermarket Does Not Cause Obesity and Diabetes, but Poverty Might

By Karen Nikos-Rose

Access to healthy food does not always relate to the presence of a nearby supermarket, but instead requires a deeper look at poverty, race and other factors in a community, a UC Davis study suggests.

Lack of a supermarket does not necessarily make a county a “food desert,” argues Catherine Brinkley, who studies food systems and community development.

The study shifts the conversation begun in the 1990s, in which “food deserts” were described as communities that were either sparsely populated or had too many low-income residents to support a supermarket. The past research said this lack of access led to health problems such as obesity and diabetes. The popular policy response then was to leverage public funds to establish a supermarket.

Receptors Key to Strong Memories

When we create a memory, a pattern of connections forms between neurons in the brain. New work from UC Davis shows how these connections can be strengthened or weakened at a molecular level. The study is published Feb. 27 in the journal Cell Reports.

AMPA-type glutamate receptors are responsible for fast synaptic transmission in the brain. (Wikipedia image)

Neurons branch into many small fibers, called dendrites, that connect to other neurons across tiny gaps called synapses. Messages travel across synapses as chemical signals: A molecule, or neurotransmitter, is released on one side of the synapse and connects with a receptor on the other side, a bit like tossing a ball and a fielder catching it in a mitt.

Italian Dark Matter Experiment Completes Run, Sets Stage for Next Experiment

The DarkSide-50 experiment at the Gran Sasso National Laboratory in Italy has completed its experimental run, the research collaboration announced today (Feb. 21). The experiment did not find any potential dark matter particles, but it did demonstrate that the technology could reject “false positive” signals from natural radioactivity or other sources. That will give researchers more confidence in data from the next, larger experiment, DarkSide-20k.

Dark Matter detector

Schematic of the DarkSide-50 detector. The cylinder is filled with liquid argon, which gives off a flash of light when a particle enters the chamber. This light is detected by photomultiplier tubes at top and bottom. (DarkSide-50 collaboration)

Podcast: A New Book Explores The Glass of Wine

Glass and wine have gone together for thousands of years. A new book, “The Glass of Wine,” delves into the science, history and artistry of this pairing. The book is by Jim Shackelford, distinguished professor emeritus of materials science and engineering in the College of Engineering, and writer and blogger Penelope Shackelford.

Glass scientist Jim Shackelford and blogger Penelope Shackelford are the authors of a new book, “The Glass of Wine” that explores the relationship between the drink and its perfect host. Photo by Daniela Wood.