Pattern Discovery over Pattern Recognition: A New Way for Computers to See

Jim Crutchfield wants to teach a machine to “see” in a new way, discovering patterns that evolve over time instead of recognizing patterns based on a stored template.

It sounds like an easy task – after all, any animal with basic vision can see a moving object, decide whether it is food or a threat and react accordingly, but what comes easily to a scallop is a challenge for the world’s biggest supercomputers.

Supercomputer

CORI at Lawrence Berkeley Lab is one of the world’s fastest computers. It is named after Gerty Theresa Cori, the first woman to win a Nobel Prize for Physiology or Medicine. (NERSC/LBL photo)

Bring On The Bats (And Birds And Raptors)

By Katherine Ingram

Spring is in the air in California’s Central Valley. Birds are bathing in puddles that dot the landscape, and bats are swooping in and out of streetlights at dusk. Both groups of wildlife are feasting on bugs emerging after this winter’s epic rains.

Bat

Bats are voracious predators of insects. Photo of Pallid bat by merlintuttle.org

The sight is a pleasant reminder of the abundance of wildlife that lives alongside us, performing tasks that inadvertently aid humans, such as natural pest control, pollination, and seed dispersal.

Five Things You Probably Didn’t Know About the Soil Microbiome

By Lisa Howard

Soil Actually Has a Microbiome

Gut bacteria have been getting a lot of attention lately (yogurt, anyone?) but it turns out the soil in your own back yard is teeming with microbial life. According to Kate Scow, a professor of soil science and microbial ecology at UC Davis, a quarter teaspoon of soil can easily contain a billion bacterial cells. And she estimates there can be 10,000 to 50,000 different taxa of microbes in a single teaspoon. Soil is one of the most complex and diverse ecosystems on the planet, and it is one that is essential for human life through all the functions it provides: the breakdown of organic materials, food production, water purification, greenhouse gas reduction, and pollution cleanup, just to name a few.

New Types of Structures for Cage-Like Clathrates

Compounds Could Be Basis For Devices That Turn Waste Heat Into Electricity

Cage-like compounds called clathrates could be used for harvesting waste heat and turning it into electricity. UC Davis chemists just discovered a whole new class of clathrates, potentially opening new ways to make and apply these materials.

Journal cover image

UC Davis chemists discovered a new class of clathrates that break the four-bond rule. The discovery was featured on the cover of the journal Angewandte Chemie (Wiley)

Honey Bee Genetics Sheds Light on Bee Origins

Where do honey bees come from? A new study from researchers at the University of California, Davis and UC Berkeley clears some of the fog around honey bee origins. The work could be useful in breeding bees resistant to disease or pesticides.

A foraging honeybee. Photo by Kathy Keatley Garvey.

A foraging honeybee. Photo by Kathy Keatley Garvey.

UC Davis postdoctoral researcher Julie Cridland is working with Santiago Ramirez, assistant professor of evolution and ecology at UC Davis, and Neil Tsutsui, professor of environmental science, policy and management at UC Berkeley, to understand the population structure of honey bees (Apis mellifera) in California. Pollination by honey bees is essential to major California crops, such as almonds. Across the U.S., the value of “pollination services” from bees has been estimated as high as $14 billion.

Looking For Martians At McLaughlin Reserve

By Kathleen Wong

In a universe with billions upon billions of planets, narrowing the search for extraterrestrial life is no mean feat. One approach seeks analogs of otherworldly conditions here on Earth, and characterizes the mineralogy, geochemistry and biology of these areas.

A NASA team is drilling at McLaughlin Natural Reserve. By studying soils and microbes in this area, they hope to learn about similar environments on Mars. (NASA photo)

A NASA team is drilling at McLaughlin Natural Reserve. By studying soils and microbes in this area, they hope to learn about similar environments on Mars. (NASA photo)

Wheat Gene Database is Tool for Improved Yield and Nutrition

By Ann Filmer

Plant scientists and wheat breeders now have a new tool to develop more nutritious and productive wheat varieties: A public online database of 10 million mutations in wheat genes. Scientists at UC Davis and three institutions in the UK created the database, which will allow scientists worldwide to study the function of every gene of wheat. The research will be reported in Proceedings of the National Academy of Sciences this week.

UC Davis Plant Sciences Professor, Jorge Dubcovsky is working to improve the yield and nutritional value of wheat, one of the world's most important crops.

UC Davis Plant Sciences Professor, Jorge Dubcovsky is working to improve the yield and nutritional value of wheat, one of the world’s most important crops.

Modeling Shows How Social Networks Help Animals Survive

By Mike Gil

Applications like Facebook and Twitter show us, on a daily basis, the power of social networks to influence individual behavior. While wild animals do not surf the web, they are connected with other individuals in shared landscapes, and “share information” through their behavior. But how does this information affect surrounding animals?

The formation of multi-species groups, such as these fish feeding on a coral reef, may be fostered by information sharing. (Heather Hillard)

The formation of multi-species groups, such as these fish feeding on a coral reef, may be fostered by social information sharing. (Heather Hillard)

Atom-by-Atom Growth Chart For Shells Helps Decode Past Climate

By Becky Oskin

For the first time scientists can see how the shells of tiny marine organisms grow atom-by-atom, a new study reports. The advance provides new insights into the mechanisms of biomineralization and will improve our understanding of environmental change in Earth’s past.

Foraminifera

Foraminifera are marine plankton with complex shells. The shells of dead forams in ocean sediments form a record of climate hundreds of millions of years into the past.

Led by researchers from the University of California, Davis and the University of Washington, with key support from the U.S. Department of Energy’s Pacific Northwest National Laboratory, the team examined an organic-mineral interface where the first calcium carbonate crystals start to appear in the shells of foraminifera, a type of plankton.

Latest Caterpillar Poll: Woolly Bears Are Undecided

With the third and final debate over, those voters who haven’t yet made up their minds will be focusing on their choice for President. But what do the woolly bear caterpillars of Bodega Bay have to say about the election?

Caterpillar

Woolly bear caterpillars are having a hard time picking the outcome of the 2016 Presidential election. (Eric Lo Presti/UC Davis)

The caterpillars shot to fame a few months ago when UC Davis graduate student Eric Lo Presti pointed out in a blog post that cycles in the caterpillar population tracked with the fortunes of political parties in presidential election years. Going back as far as 1984, Democrats won the White House in years when the caterpillars were abundant in March, and Republicans when the caterpillars were less prolific.