DNA-ROM: New Grant Aims for Memory Chips Based on DNA

Josh Hihath is trying to fuse biology and electrical engineering and to build new types of electronic memory based on DNA. Hihath, professor in the UC Davis Department of Electrical and Computer Engineering, is principal investigator of a grant just funded by the Semiconductor Synthetic Biology for Information Processing and Storage Technologies (SemiSynBio) program. SemiSynBio is a partnership between the National Science Foundation and the Semiconductor Research Corporation.

Schematic of DNA memory

Researchers at UC Davis, University of Washington and Emory University hope to use self-assembling DNA molecules to build a “DNA-ROM” that can store digital information. (Josh Hihath/Yonggang Ke)

Lab-grown Cartilage Transplant Eases Temporomandibular Joint Disease in Animal Model

A first-ever tissue implant to safely treat a common jaw defect, temporomandibular joint dysfunction, has been successfully tested in animals by researchers from UC Irvine and UC Davis.

“We were able to show that we could achieve exceptional healing of the TMJ area after eight weeks of treatment,” said UCI Distinguished Professor of biomedical engineering Kyriacos Athanasiou, senior author on the study, published Wednesday in Science Translational Medicine. Athanasiou, who joined UC Irvine last year after several years at UC Davis’ Department of Biomedical Engineering, has been working on the condition for nearly two decades.

Podcast: New Insight on Spinal Injuries

Spinal injuries are life-changing, and it used to be thought that recovery of limb movement below the injury was impossible. But new research is showing that with the right therapies, the body can find ways to work around spinal injuries. Professor Karen Moxon of the UC Davis Department of Biomedical Engineering talks about her work with rats and how they can recover from injury.

Listen: Three Minute Egghead: New Insight on Spinal Injuries (Soundcloud)

More information

Working Around Spinal Injuries (News release)

Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats (eLife)

 

Graphene Layered with Magnetic Materials Could Drive Ultrathin Spintronics

Scientists with instrument

UC Davis project scientist Gong Chen (right) and coauthor Andres Schmid of Lawrence Berkeley Lab with the SPLEEM instrument used for imaging magnetic fields inside materials. Photo by Roy Kaltschmidt/LBL.

Tiny swirling textures in the magnetic fields within layered materials could be a key to replacing disk drives and flash memory in computing devices. Physicists at UC Davis and the Lawrence Berkeley National Laboratory are exploring how these patterns form in materials layered with graphene, an ultrathin form of carbon. A paper on the work was published online May 28 in Nature Materials.

Bio-Inspired Natural Hazards Design-a-Thon is April 28

Teams of undergraduate engineers from UC Davis and nearby colleges and universities will be pulling an all-nighter this weekend, working on using the inspiration or processes of nature to prevent or mitigate natural hazards.

The Center for Bio-mediated and Bio-inspired Geotechnics Design-a-thon runs from 11 a.m. Saturday, April 28 to 3 p.m. on Sunday, April 29 in room 1065, Kemper Hall.

Registration is still open: click here

Student teams will select a natural hazard such as fire, flood, earthquake, tsunami or hurricane, and come up with an engineering solution that is affordable, sustainable, has minimal environmental impact and is equitable for all. There will be cash prizes for first, second and third places.

“Hey, Alexa…” Students Compete for Amazon’s AI Prize

By Bonnie Dickson

A UC Davis student team is one of eight teams worldwide  recently selected to compete in Amazon’s 2018 Alexa Prize Challenge – an artificial intelligence competition to advance the technology behind the company’s popular social bot.

Team Gunrock includes 12 graduate students and two undergraduate students with diverse, interdisciplinary backgrounds related to artificial intelligence. Advised by Zhou Yu, an assistant professor of computer science in the College of Engineering, the team has received a $250,000 research stipend, Alexa-enabled devices and support from Amazon’s web services team to assist with their development efforts during the competition. The team also has access to Alexa’s application programming interfaces as well as additional tools, data and support from Amazon’s Alexa team.

Chemical Messengers, Calcium and Neutrophils

Neutrophils are the most abundant type of white blood cell. They play a vital role in defending us from infections, by engulfing and destroying bacteria and viruses or cancerous cells. A new study by UC Davis engineering student Emmet Francis, working with Professor Volkmar Heinrich in the Department of Biomedical Engineering, adds to our knowledge of how neutrophils are drawn towards infection sites and how they can attack their targets.

First, Francis and Heinrich looked at how isolated neutrophils respond to chemical messengers called anaphylatoxins. These molecules guide immune cells to their targets but can cause severe illness in excessive amounts.

Piezomagnetic Material Changes Magnetic Properties When Stretched

Piezoelectric materials, which generate an electric current when compressed or stretched, are familiar and widely used: think of lighters that spark when you press a switch, but also microphones, sensors, motors and all kinds of other devices. Now a group of physicists has found a material with a similar property, but for magnetism. This “piezomagnetic” material changes its magnetic properties when put under mechanical strain.

Magnetic experiment

Top: A piece of BaFe2As2 is stretched while magnetic measurements are taken (the copper wire coil is part of the NMR device). Lower diagram shows atoms in a plane, with black arrows showing how magnetic spins lie in plane and point in opposite directions. Grey arrows show how the magnetic spin of atoms shifts as the material is stretched.

Podcast: A New Book Explores The Glass of Wine

Glass and wine have gone together for thousands of years. A new book, “The Glass of Wine,” delves into the science, history and artistry of this pairing. The book is by Jim Shackelford, distinguished professor emeritus of materials science and engineering in the College of Engineering, and writer and blogger Penelope Shackelford.

Glass scientist Jim Shackelford and blogger Penelope Shackelford are the authors of a new book, “The Glass of Wine” that explores the relationship between the drink and its perfect host. Photo by Daniela Wood.

California Water-Saving Drive Saved Energy, Too

California’s drive to save water during the drought had a double benefit: it saved a lot of energy as well.

Graphs of water and energy use

This interactive website shows how California cities and water districts saved energy and water

In April 2015, Governor Jerry Brown mandated a 25 percent cut in urban water consumption in the face of continuing drought. Water suppliers were required to report their progress to the State Water Resources Control Board. Now analysis of those figures by researchers Edward Spang, Andrew Holguin and Frank Loge at the UC Davis Center for Water-Energy Efficiency shows that while the state came within 0.5 percent of the water conservation goal, California also saved 1830 GigaWatt-Hours of energy — enough to power more than 270,000 homes.