Supercomputer Simulates Dynamic Magnetic Fields of Jupiter, Earth, Sun

By Becky Oskin

As the Juno space probe approached Jupiter in June last year, researchers with the Computational Infrastructure for Geodynamics’ Dynamo Working Group were starting to run simulations of the giant planet’s magnetic field on one of the world’s fastest computers. While the timing was coincidental, the supercomputer modeling should help scientists interpret the data from Juno, and vice versa.

Video: Simulation of Jupiter’s magnetic fields 

“Even with Juno, we’re not going to be able to get a great physical sampling of the turbulence occurring in Jupiter’s deep interior,” Jonathan Aurnou, a geophysics professor at UCLA who leads the geodynamo working group, said in an article for Argonne National Laboratory news. “Only a supercomputer can help get us under that lid.”

New Technique Makes Light Metallic Nanofoam

By Becky Oskin

A simple method for manufacturing extremely low-density palladium nanofoams could help advance hydrogen storage technologies, reports a new study from the University of California, Davis.

Palladium nanofoam

UC Davis physicists Dustin Gilbert, Kai Liu and colleagues have come up with a new method to make a nanofoam of palladium. The foamy metal could be used to store hydrogen in vehicles or for other purposes. (Image credit: Dustin Gilbert and Kai Liu, UC Davis)

Fabric from Fermented Tea in the Biomaker Lab

The Molecular Prototyping and BioInnovation Laboratory, or “Biomaker Lab” at UC Davis is a place where students can try out their ideas and develop their own projects in biotechnology. It reflects as “maker culture”  that is well-established in engineering, and growing in biological sciences.

“Kombucha couture” clothes made by artist Sacha Laurin (center) for Paris Fashion Week and National Geographic magazine. With Laurin are, from left, models Ghazal Gill, Grace Sanders and Ericah Howard, and reporter Bethany Crouch of CBS13 and Good Day Sacramento.

New Cardiac Catheter Combines Light and Ultrasound to Measure Plaques

By Holly Ober

To win the battle against heart disease, cardiologists need better ways to identify the composition of plaque most likely to rupture and cause a heart attack. Angiography allows them to examine blood vessels for constricted regions by injecting them with a contrast agent before X-raying them. But because plaque does not always result in constricted vessels, angiography can miss dangerous buildups of plaque. Intravascular ultrasound can penetrate the buildup to identify depth, but lacks the ability to identify some of the finer details about risk of plaque rupture.

Commuting by Skateboard at UC Davis

Lots of people travel to class and work at UC Davis by bicycle, some walk and some drive their cars. But there is another, growing class of commuters: skateboarders. Kevin Fang and Susan Handy at the UC Davis Institute for Transportation Studies have conducted the a survey of skateboard commuters, based on interviews at UC Davis, and they reported the findings in the journal Transportation recently.

Worker on skateboard

Skateboards offer the speed of bicycles with the access of walking. A new UC Davis survey shows a significant use of skateboards to commute to work or class. (UC Davis photo)

NIH Funds Project to Model Atrial Fibrillation with Heart-on-a-Chip

By Holly Ober

Creating a model of atrial fibrillation with live human heart cells on a chip is the goal of a new $6 million, five-year grant to Professor Steven George at the UC Davis Department of Biomedical Engineering and colleagues at Washington University in St. Louis.

Steven George headshot

UC Davis biomedical engineer Steven George will grow heart cells on a chip to study atrial fibrillation.

Atrial fibrillation is an irregular heartbeat caused when the heart’s upper chambers beat chaotically and out of sync with the lower chambers, leading to a variety of health problems including stroke and death. Nearly one in ten people over the age of 65 suffer from atrial fibrillation at a cost of around $6 billion.

Engineer Takes Part in Eclipse Experiment

For most of us Monday’s solar eclipse was a wonderful spectacle, but some scientists were out gathering data, too. Holly Oldroyd, assistant professor in the UC Davis Department of Civil and Environmental Engineering, joined a team led by Chad Higgins at Oregon State University to measure atmospheric fluxes during the eclipse.

As night turns to day and back there are changes in atmospheric temperature and pressure, water vapor and carbon dioxide, and in emissions from soils and plants into the atmosphere. Higgins’ experiment aimed to find out whether the same kinds of changes take place during the very short “night” created by the total solar eclipse. Normally these measurements are taken over time spans of half an hour or so, so the team, which also included researchers at Lawrence Livermore National Laboratory, had to come up with ways to make accurate measurements over a couple of minutes.

Industry Supports UC Davis Coffee Research

The Research Center of the Specialty Coffee Association (SCA) is teaming up with the UC Davis Coffee Center to embark on a two-year project to re-evaluate the scientific assumptions, measurement tools, sensory information, and – most importantly – consumer research that forms the foundation of the coffee industry’s fundamental understanding of coffee brewing.

Students in the UC Davis “Design of Coffee” class learn engineering principles from roasting and brewing coffee.

This research is underwritten with funding from Breville, which produces high-end appliances, including coffee and tea equipment.

Pattern Discovery over Pattern Recognition: A New Way for Computers to See

Jim Crutchfield wants to teach a machine to “see” in a new way, discovering patterns that evolve over time instead of recognizing patterns based on a stored template.

It sounds like an easy task – after all, any animal with basic vision can see a moving object, decide whether it is food or a threat and react accordingly, but what comes easily to a scallop is a challenge for the world’s biggest supercomputers.


CORI at Lawrence Berkeley Lab is one of the world’s fastest computers. It is named after Gerty Theresa Cori, the first woman to win a Nobel Prize for Physiology or Medicine. (NERSC/LBL photo)

NSF Grant Funds Math For National Security

Applying mathematics to detect chemical weapons, hidden explosives or other threats is the goal of an ongoing project at the UC Davis Department of Mathematics, supported by grants from the National Science Foundation.

Resolving blurred image with math

Blind deconvolution is a mathematical method to clarify a blurred image without knowledge of the original image, or how it was blurred. Top, original image; bottom, blurred image after blind deconvolution (Original image by Steve Byland).

Threat detection involves math at a range of levels, said Professor Thomas Strohmer, who leads the project. It can include quickly processing large amounts of data, coordinating multiple sensors, or extracting clarity from background noise.