UC Davis scientists explore the microbiome

Today’s White House announcement of the National Microbiome Initiative will bring new funding and attention to better understand the billions of microbes that swarm around in and around us and probably play an important role in our health, food and environment. At UC Davis, many scientists are already exploring this hidden world. Here are a few of them.

Jonathan Eisen is one of the pioneers of studying microbe communities through genetic sequencing. His lab is involved in understanding the complete “Tree of Life,” and projects on microbial communities associated with buildings, as well as communities on different plants and animals, including people, dogs and cats. A prolific blogger, Eisen regularly calls out examples of excessive microbiome hype.

How antibiotics open door to “bad” gut bacteria: more oxygen

By Carole Gan

Antibiotics are essential for fighting bacterial infection, but they can also make the body more prone to infection and diarrhea. Exactly how do antibiotics foster growth of disease-causing microbes – and how can resident “good” microbes in the gut protect against pathogens, such as Salmonella?

Now research led by Andreas Bäumler, professor of medical immunology and microbiology at UC Davis Health System, has identified the chain of events that occur within the gut lumen of mice after antibiotic treatment that allow “bad” bugs to flourish.

Microbe studies zoom in on effects of HIV in the gut

By Pat Bailey

The curtain cloaking how AIDS and HIV (human immunodeficiency virus) impact the human digestive and immune systems has been drawn back a bit further, thanks to a team of researchers from UC Davis’ departments of Food Science and Technology and Medical Microbiology and Immunology.

The small intestine­ is extremely difficult to study because of its location in the body but plays a critical role in human health. Its inner lining offers both a portal for absorbing nutrients and a barrier against toxins or invasive microbes.

Livestock and Climate Change: Facts and Fiction

Dairy cows eat hay

Holstein cows eat lunch at the Dairy Cattle Facility at UC Davis. Credit: Gregory Urquiaga, UC Davis

By Frank Mitloehner

As the November 2015 Global Climate Change Conference COP21 concluded in Paris, 196 countries reached agreement on the reduction of fossil fuel use and emissions in the production and consumption of energy, even to the extent of potentially phasing out fossil fuels out entirely.

Both globally and in the U.S., energy production and use, as well as the transportation sectors, are the largest anthropogenic contributors of greenhouse gasses (GHG), which are believed to drive climate change. While there is scientific consensus regarding the relative importance of fossil fuel use, anti animal-agriculture advocates portray the idea that livestock is to blame for a lion’s share of the contributions to total GHG emissions.

West Coast Scientists Recommend Immediate Action Plan to Combat Ocean Acidification

By Kat Kerlin

Global carbon dioxide emissions are triggering permanent changes to ocean chemistry along the West Coast. Failure to act on this fundamental change in seawater chemistry, known as ocean acidification, is expected to have devastating ecological consequences for the West Coast in the decades to come, warns a multistate panel of scientists, including two from UC Davis Bodega Marine Laboratory.

Their report, issued this week, urges immediate action and outlines a regional strategy to combat the alarming global changes underway. Inaction now will reduce options and impose higher costs later, the report said.

Not so sweet: Why Pollinators Forage on Toxic or Bitter Nectar

Audio: Listen to this story on our podcast, Three Minute Egghead. 

By Kathy Keatley Garvey

Nectar doesn’t always taste so sweet, but honeybees and other pollinators still feed on it. Now UC Davis community ecologist Rachel Vannette has discovered why pollinators continue to forage on “toxic” or bitter-tasting nectar, despite what should be a deterrent.

In newly published research in the journal Ecology, Vannette notes that floral nectar is produced by many plants to reward pollinators, but this sugary secretion often contains chemical compounds that are bitter tasting or toxic, which should deter pollinators. Plants including citrus, tobacco (Nicotiana), milkweed (Asclepias), turtlehead (Chelone), Catalpa, and others produce nectar containing bioactive or toxic compounds.

Innovation event jumpstarts dialogue on food, agriculture and health

By Kyeema Zerbe and Jennifer Hebets

The first ever event by the Innovation Institute for Food and Health (IIFH) struck surprising consensus in the food, agriculture and health agenda. The Challenge Definition Workshop held Oct. 29 set the stage for dialogue around such issues as crop selection, soil health, nutrition education, consumer decision-making, and technology feasibility – all under the overarching themes of health, sustainability, knowledge and governance. Next week, focus groups will deliberate the research questions behind such challenges, in preparation for the tour, hackathon and conference scheduled at the Solution Summit on December 2 and 3 in the UC Davis Conference Center.

Innovation Institute kicks-off “uncommon collaboration” for food and health with workshop

By Kyeema Zerbe

The Innovation Institute for Food and Health (IIFH) at UC Davis is kicking off a uniquely open collaboration on solving critical challenges in food, agriculture and health with an open workshop Oct. 29 inviting participants from all disciplines to provide input on the institute’s strategic focus.

Food and nutrition insecurity remain serious issues for more than 50 developing countries, according to the 2015 Global Hunger Index. And even as many as 10 percent of populations in developed countries go hungry, including in the fertile lands of California’s Central Valley. The UN Food and Agriculture Organization reports that almost 800 million people worldwide are chronically undernourished. With the global population expected to reach nearly 10 billion by 2050, society faces an uncertain future that demands a coordinated response from all sectors to improve access to adequate nutrition.

Fourth wheat gene is key to flowering and climate adaptation

By Pat Bailey

In the game of wheat genetics, Jorge Dubcovsky’s laboratory at UC Davis has hit a grand slam, unveiling for the fourth time in a dozen years a gene that governs wheat vernalization, the biological process requiring cold temperatures to trigger flower formation.

Identification of the newly characterized VRN-D4 gene and its three counterpart genes is crucial for understanding the vernalization process and developing improved varieties of wheat, which provides about one-fifth of the calories and proteins that we humans consume globally.

Dairy products boost effectiveness of probiotics, new studies show

Probiotics, those living bacteria and yeasts that offer a variety of health benefits, especially for the digestive system, are now available to consumers in yogurt and a variety of other food products as well as in nonfood supplements. But little is known about how the products containing those probiotics might influence their effectiveness.

Could it really be important whether you consume a probiotic in yogurt or other fermented foods and beverages rather than in a supplement? And is there something about dairy products that makes them particularly well suited for probiotics?