SNO+ Neutrino Detector Gets Ready For Run

snowaterfill-1

SNO+ neutrino detector being filled with ultrapure water. The detector will search for neutrinos from distant supernovae and nuclear reactors. Credit: SNO+ Collaboration

 

Not a still from a science fiction movie, but the SNO+ neutrino detector being filled with very pure water prior to starting operations. Located over a mile underground in a mine in Ontario, Canada, the SNO+ detector consists of an acrylic sphere 12 meters in diameter filled with 800 tonnes of scintillation fluid, floating in a bath of ultrapure water surrounded by 10,000 photomultiplier tubes that will detect flashes of light from passing neutrinos.

Three Minute Egghead: Finding the Furthest, Faintest Galaxy

In the latest episode of the Three Minute Egghead podcast, UC Davis astronomer Marusa Bradac explains why she’s looking towards the beginning of time to find the furthest, faintest object in the universe, and how a gigantic lens in the sky can help.

Read the news release about this story here.

For more Three Minute Egghead podcasts, see our Soundcloud playlist here.

Physics Nobel for topological phase transitions

The 2016 Nobel Prize for Physics will be shared by David Thouless, F. Duncan Haldane and J. Michael Kosterlitz for their work on peculiar states of matter under extreme conditions. The three used advanced mathematics — specifically topology, the study of shapes — to build theoretical models of matter. Their work has practical implications for understanding superconductors, superfluids and thin magnetic films, and ultimately for new types of devices and technologies.

“This year’s Laureates opened the door on an unknown world where matter can assume strange states,” according to the Nobel Prize citation.

Calculating just how fast Usain Bolt runs

With gold medals in three sprinting events at three Olympic Games, Usain Bolt has written himself into the record books as arguably the fastest human of all time. But just how fast is the Jamaican sprinter?

Three mathematicians, Sebastian Schreiber of UC Davis, Wayne Getz of UC Berkeley and Karl Smith of Santa Rosa Junior College, show how to calculate Bolt’s maximum velocity in the 100 meters at the 2008 Beijing Olympics in their 2014 textbook, “Calculus for the Life Sciences.”

This plot shows Usain Bolt's velocity measured at 10 meter intervals.

This plot shows Usain Bolt’s velocity measured at 10 meter intervals.

LUX Dark Matter Experiment Ends Run, Still No Dark Matter

UC Davis grad student in LUX chamber

UC Davis graduate student Jeremy Mock inspecting the LUX detector before the chamber was filled with water. Credit: Matt Kapust/Sanford Lab

The Large Underground Xenon (LUX) dark matter experiment, which operates beneath a mile of rock at the Sanford Underground Research Facility in the Black Hills of South Dakota, has completed its silent search for the missing matter of the universe.

The experiment did not find a dark matter particle, but it did eliminate a wide swath of mass ranges where a Weakly Interacting Massive Particle, or WIMP, the leading theoretical candidate for dark matter, might exist, team members said.

Grounds For Concern: Is Your Coffee Consistent?

UC Davis entomologist Christian Nansen trained some high-tech analysis on coffee beans, showing that brands were not consistent in content. Photo: Kathy Garvey

UC Davis entomologist Christian Nansen trained some high-tech analysis on coffee beans, showing that brands were not consistent in content. Photo: Kathy Garvey

By Kathy Keatley Garvey

If your particular brand of coffee doesn’t seem to taste the same from week to week or month to month, you may be  right. And it’s not you, it’s the coffee beans.

Agricultural entomologist Christian Nansen of the UC Davis Department of Entomology and Nematology and four colleagues analyzed 15 brands of roasted coffee beans, purchased at an area supermarket on two dates about six months apart, and using hyperspectral imaging technology, found “they were all over the board.”

Perovskite, Potential Solar Cell Material Unsuited for Real-World Use

By Becky Oskin

Solar cells made from perovskites have sparked great excitement in recent years because the crystalline compounds boast low production costs and high energy efficiencies. Now UC Davis scientists have found that some promising compounds — the hybrid lead halide perovskites — are chemically unstable and may be unsuited for solar cells.

“We have proven these materials are highly unlikely to function on your rooftop for years,” said Alexandra Navrotsky, interdisciplinary professor of ceramic, earth, and environmental materials chemistry at UC Davis and director of the Nanomaterials in the Environment, Agriculture, and Technology (NEAT) organized research unit.

UC Davis Physicist Will Illuminate Black Holes In Inaugural Ko Lecture

Update May 4: This event is now free of charge for all. RSVPs are requested.

By Becky Oskin

The first lecture in new Winston Ko Frontiers in Mathematical and Physical Sciences Public Lecture series will take place May 9. Veronika Hubeny will discuss modern understanding of black holes, and the remaining mysteries. Her talk, “Illuminating Black Holes,” begins at 5 p.m. on Monday, May 9, in the UC Davis Conference Center.Public lecture on black holes, May 9, UC Davis Conference Center

Magneto-ionics could be a new alternative to electronics

Our electronic devices are based on what happens when different materials are layered together: “The interface is the device,” as Nobel laureate Herbert Kroemer famously claimed over 40 years ago. Right now, our microchips and memory devices are based on the movement of electrons across and near interfaces, usually of silicon, but with limitations of conventional electronics become apparent, researchers are looking at new ways to store or process information. These “heterostructures” can also find applications in advanced batteries and fuel cells.

Now physicists at UC Davis have observed what’s going on at some of these interfaces as oxygen ions react with different metals, causing drastic changes in magnetic and electronic properties.

New results from LUX dark matter detector

Contributed by the LUX Collaboration

The Large Underground Xenon (LUX) dark matter experiment, which operates nearly a mile underground at the Sanford Underground Research Facility (SURF) in the Black Hills of South Dakota, has already proven itself to be the most sensitive dark matter detector in the world. Now, a new set of calibration techniques employed by LUX scientists has again dramatically improved its sensitivity.

Researchers with LUX are looking for WIMPs, weakly interacting massive particles, which are among the leading candidates for dark matter.