Reversing Cause And Effect Is No Trouble For Quantum Computers

Watch a movie backwards and you’ll likely get confused – but a quantum computer wouldn’t.

In research published 18 July in Physical Review X, an international team shows that a quantum computer is less in thrall to the arrow of time than a classical computer. In some cases, it’s as if the quantum computer doesn’t need to distinguish between cause and effect at all.

We find it easier to understand events in time sequence, but a quantum computer may not be so limited, say researchers at UC Davis and the National University of Singapore. Image by Aki Honda/Centre for Quantum Technologies, National University of Singapore.

Curiosity Finds Organic (Carbon-based) Material in Gale Crater, Mars

The Mars Curiosity rover team announced today (June 7) finding organic matter – carbon-based compounds – in three billion year old mudstone sediments from Gale Crater. They also found seasonal changes in the amount of methane in the local atmosphere.

Scientist and Mars rover

Dawn Sumner is a member of the Mars Curiosity team.

Dawn Sumner, professor of earth and planetary sciences at UC Davis, is a member of the Mars Curiosity team and coauthor on the first paper. She helps with sample selection and mission planning and was instrumental in promoting Gale Crater as a landing site for Curiosity.

Graphene Layered with Magnetic Materials Could Drive Ultrathin Spintronics

Scientists with instrument

UC Davis project scientist Gong Chen (right) and coauthor Andres Schmid of Lawrence Berkeley Lab with the SPLEEM instrument used for imaging magnetic fields inside materials. Photo by Roy Kaltschmidt/LBL.

Tiny swirling textures in the magnetic fields within layered materials could be a key to replacing disk drives and flash memory in computing devices. Physicists at UC Davis and the Lawrence Berkeley National Laboratory are exploring how these patterns form in materials layered with graphene, an ultrathin form of carbon. A paper on the work was published online May 28 in Nature Materials.

Forensic Science Program Provides Skills for Crime Labs

This week I had the opportunity to meet the new director of the UC Davis Forensic Science Graduate Program and catch up on the program. Founded in 2002, the program, which offers a Master of Science degree through either part-time or full-time study, currently has about 80 students enrolled.

The UC Davis graduate program in forensic science includes lab work and a research thesis.

Steps Towards Making a Hydrogen Fuel Enzyme

Science generally gets reported as if it happens in big leaps, but in reality most of the time science progresses in small but satisfying steps. One example of this is another step in a story I have followed for several years from Professor David Britt’s lab in the UC Davis Department of Chemistry, published April 9 in the journal Nature Chemistry.

David Britt’s laboratory at the UC Davis Department of Chemistry uses advance techniques to study how enzymes that can produce hydrogen are assembled.

With Giant Lens, Astronomers Find a Single Star Across Half the Universe

Through a lucky quirk of nature, astronomers have used the Hubble Space Telescope to view a single star halfway across the universe. Nine billion light years from Earth, the giant blue-white star, nicknamed “Icarus” by the team, is by far the most distant individual star ever seen.

Distant star image

Icarus is the farthest individual star ever seen. It is only visible because it is magnified by the gravity of a massive galaxy cluster, located about 5 billion light-years from Earth. The panels at right show the view in 2011, without Icarus visible, and the star’s brightening in 2016. (Hubble/STScI)

Italian Dark Matter Experiment Completes Run, Sets Stage for Next Experiment

The DarkSide-50 experiment at the Gran Sasso National Laboratory in Italy has completed its experimental run, the research collaboration announced today (Feb. 21). The experiment did not find any potential dark matter particles, but it did demonstrate that the technology could reject “false positive” signals from natural radioactivity or other sources. That will give researchers more confidence in data from the next, larger experiment, DarkSide-20k.

Dark Matter detector

Schematic of the DarkSide-50 detector. The cylinder is filled with liquid argon, which gives off a flash of light when a particle enters the chamber. This light is detected by photomultiplier tubes at top and bottom. (DarkSide-50 collaboration)

Synchrony in Ecology: What Magnets Have To Do With Pistachios

By Kat Kerlin

Did you ever pass an orchard with branches bursting with flowers and wonder how the trees “know” when to blossom or bear fruit all at the same time? Or perhaps you’ve walked through the woods, crunching loads of acorns underfoot one year but almost none the next year.

Pistachios

A new study shows why pistachio trees are like magnets, mathematically speaking.

Scientists from the University of California, Davis, have given such synchronicity considerable thought. In 2015, they developed a computer model showing that one of the most famous models in statistical physics, the Ising model, could be used to understand why events occur at the same time over long distances.

SuperBlueBloodMoon: New Ideas About Lunar Formation

January 31 will be an early morning show for Moon lovers. Starting about 2.51 a.m. Pacific Time will be a lunar eclipse, or “blood moon” as the Moon passes through Earth’s shadow and picks up a reddish tint. At the same time, the full Moon of Jan. 31 is also a “supermoon” when the Moon is relatively close to Earth and looks bigger and brighter, and a “blue Moon” because it is the second full Moon in one month.

NASA is calling it a “SuperBlueBloodMoon.” (If it’s cloudy where you are, NASA is also running a live stream of the eclipse.)

Looking for New Pollutants in the Ashes of Sonoma

In this month’s episode of Three Minute Egghead, UC Davis graduate student Gabrielle Black talks about collecting samples of ash from neighborhoods burned by last year’s northern California wildfires. The intense heat on a wide range of household items from insulation to electronics may have created new chemical pollutants. Thanks to modern analytic technology, Black plans to search for both known pollutants and new compounds, and compare them to the ashes of burned wild land.

Listen to the podcast here.

More information

Testing Sonoma Ash and Air for Fire-Formed Pollutants

WHAT-NOW Survey (UC Davis Environmental Health Sciences Center)