Supercomputer Simulates Dynamic Magnetic Fields of Jupiter, Earth, Sun

By Becky Oskin

As the Juno space probe approached Jupiter in June last year, researchers with the Computational Infrastructure for Geodynamics’ Dynamo Working Group were starting to run simulations of the giant planet’s magnetic field on one of the world’s fastest computers. While the timing was coincidental, the supercomputer modeling should help scientists interpret the data from Juno, and vice versa.

Video: Simulation of Jupiter’s magnetic fields 

“Even with Juno, we’re not going to be able to get a great physical sampling of the turbulence occurring in Jupiter’s deep interior,” Jonathan Aurnou, a geophysics professor at UCLA who leads the geodynamo working group, said in an article for Argonne National Laboratory news. “Only a supercomputer can help get us under that lid.”

Podcast: Synestia, a New Type of Planetary Object

In this month’s Three-Minute Egghead, Sarah Stewart and Simon Lock talk about synestias. A synestia is a new type of planetary object, they proposed, formed when a giant collision between planet-size objects creates a mass of hot, vaporized rock spinning with high angular momentum. Synestias could be an important stage in planet formation, and we might be able to find them in other solar systems.

https://soundcloud.com/user-570302262/three-minute-egghead-synestia-a-new-planetary-object?in=user-570302262/sets/three-minute-egghead-a-podcast

More information

News release: Synestia, A New Type of Planetary Object

New Theory Explains How the Moon Got There

Simon Lock’s Synestia Page